Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana

نویسندگان

  • Charlotte Montacié
  • Nathalie Durut
  • Alison Opsomer
  • Denise Palm
  • Pascale Comella
  • Claire Picart
  • Marie-Christine Carpentier
  • Frederic Pontvianne
  • Christine Carapito
  • Enrico Schleiff
  • Julio Sáez-Vásquez
چکیده

In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones.

Neurodegenerative diseases are characterized by progressive degeneration of selective neurones in the nervous system, but the underlying mechanisms involved in neuroprotection and neurodegeneration remain unclear. Dysfunction of the ubiquitin proteasome system is one of the proposed hypotheses for the cause and progression of neuronal loss. We have performed quantitative two-dimensional fluores...

متن کامل

Nucleolar stress induces ubiquitination-independent proteasomal degradation of PICT1 protein.

The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent m...

متن کامل

Identification and characterization of a Drosophila proteasome regulatory network.

Maintaining adequate proteasomal proteolytic activity is essential for eukaryotic cells. For metazoan cells, little is known about the composition of genes that are regulated in the proteasome network or the mechanisms that modulate the levels of proteasome genes. Previously, two distinct treatments have been observed to induce 26S proteasome levels in Drosophila melanogaster cell lines, RNA in...

متن کامل

Characterization of the 26S proteasome network in Plasmodium falciparum

In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world's population. First, we established an affinity purification protocol allowing for the isolation of functional 26S pro...

متن کامل

Pitfalls in invertebrate proteasome assays.

The ubiquitin-proteasome system controls a variety of essential intracellular processes through directed protein turnover. The invertebrate proteasome has recently gained increasing interest with respect to central physiological processes and pathways in different taxa. A pitfall in proteasome activity assays, represented by the trypsin-like, chymotrypsin-like or caspase-like site, lies in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017