Lipid hydroperoxides permit deformation-dependent leak of monovalent cation from erythrocytes.

نویسندگان

  • T Sugihara
  • W Rawicz
  • E A Evans
  • R P Hebbel
چکیده

Subtle peroxidative perturbation of normal red blood cells (RBC) using t-butylhydroperoxide creates a leak pathway for monovalent cations that is reversibly activated by cell deformation. To determine what factor promotes expression of this unique membrane defect, we have dissected "peroxidation" into components that can be evaluated separately by comparing K leak from suitably modified RBC during elliptical deformation and parallel control incubation. Selective introduction of phospholipid hydroperoxides into normal RBC membranes successfully induces a deformation-dependent leak pathway having the same phenomenology as that previously documented for cells treated with t-butylhydroperoxide itself (fully recoverable; calcium-independent; inhibited at lower pH; K efflux balanced by Na influx). This leak pathway occurs in the absence of detectable secondary peroxidative change and appears to reflect a direct influence of lipid hydroperoxide. Using micropipette examination of vesicular bilayers reconstituted from RBC lipid extracts, we find that lipid from peroxidized RBC exhibits only a slight tendency to be less cohesive than normal lipid, apparently precluding isolated lipid properties as an explanation for altered permeability barrier function. However, addition of a hydrophobic membrane-spanning peptide to these same lipids significantly diminishes bilayer cohesion, an effect that is exacerbated further by the presence of peroxidized lipid. These observations suggest that lipid hydroperoxide is a necessary, but perhaps not sufficient, factor for induction of this unique leak pathway. Our results may be relevant to the abnormal cation homeostasis of sickle RBC in which deformation of an oxidatively perturbed membrane occurs during the sickling phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic effects of oxidation and deformation on erythrocyte monovalent cation leak.

The normal red blood cell (RBC) membrane is remarkable for its durability (eg, preservation of permeability barrier function) despite its need to remain deformable for the benefit of microvascular blood flow. Yet, it may be hypothesized that the membrane's tolerance of deformation might be compromised under certain pathologic conditions. We studied this by subjecting normal RBC in viscous suspe...

متن کامل

Deformation of swollen erythrocytes provides a model of sickling-induced leak pathways, including a novel bromide-sensitive component.

Deoxygenation-induced red blood cell (RBC) sickling probably activates multiple cation leak pathways. In an attempt to model this, we examined the net passive K efflux ("K leak") from normal and sickle RBCs undergoing elliptical deformation in hypotonic media (200 mOsmol/L). This hypotonic deformation activates two deformation-dependent K leak pathways that are not detectable during the balance...

متن کامل

Exaggerated cation leak from oxygenated sickle red blood cells during deformation: evidence for a unique leak pathway.

An abnormal susceptibility of the sickle red blood cell (RBC) membrane to deformation could compromise its permeability barrier function and contribute to the exuberant cation leakiness occurring during the sickling phenomenon. We examined this hypothesis by subjecting RBCs at ambient oxygen tension to elliptical deformation, applying shear stress in a viscous medium under physiologic condition...

متن کامل

The monovalent cation "leak" transport in human erythrocytes: an electroneutral exchange process.

The mechanism of the "ground permeability" of the human erythrocyte membrane for K+ and Na+ was investigated with respect to a possible involvement of a previously unidentified specific transport pathway, because earlier studies showed that it cannot be explained on the basis of simple electrodiffusion. In particular, we analyzed and described the increase in the (ouabain+bumetanide+EGTA)-insen...

متن کامل

Band 3 Missense Mutations and Stomatocytosis: Insight into the Molecular Mechanism Responsible for Monovalent Cation Leak

Missense mutations in the erythroid band 3 protein (Anion Exchanger 1) have been associated with hereditary stomatocytosis. Features of cation leaky red cells combined with functional expression of the mutated protein led to the conclusion that the AE1 point mutations were responsible for Na(+) and K(+) leak through a conductive mechanism. A molecular mechanism explaining mutated AE1-linked sto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 77 12  شماره 

صفحات  -

تاریخ انتشار 1991