Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR.

نویسندگان

  • Yongchao Su
  • Tim Doherty
  • Alan J Waring
  • Piotr Ruchala
  • Mei Hong
چکیده

Cell-penetrating peptides (CPPs) are small cationic peptides that cross the cell membrane while carrying macromolecular cargoes. We use solid-state NMR to investigate the structure and lipid interaction of two cationic residues, Arg(10) and Lys(13), in the CPP penetratin. (13)C chemical shifts indicate that Arg(10) adopts a rigid beta-strand conformation in the liquid-crystalline state of anionic lipid membranes. This behavior contrasts with all other residues observed so far in this peptide, which adopt a dynamic beta-turn conformation with coil-like chemical shifts at physiological temperature. Low-temperature (13)C-(31)P distances between the peptide and the lipid phosphates indicate that both the Arg(10) guanidinium Czeta atom and the Lys(13) Cepsilon atom are close to the lipid (31)P (4.0-4.2 A), proving the existence of charge-charge interaction for both Arg(10) and Lys(13) in the gel-phase membrane. However, since lysine substitution in CPPs is known to weaken their translocation ability, we propose that the low temperature stabilizes interactions of both lysine and arginine with the phosphates, whereas at high temperatures, the lysine-phosphate interaction is much weaker than the arginine-phosphate interaction. This is supported by the unusually high rigidity of the Arg(10) side chain and its beta-strand conformation at high temperatures. The latter is proposed to be important for ion pair formation by allowing close approach of the lipid headgroups to guanidinium side chains. (19)F and (13)C spin diffusion experiments indicate that penetratin is oligomerized into beta-sheets in gel-phase membranes. These solid-state NMR data indicate that guanidinium-phosphate interactions exist in penetratin, and guanidinium groups play a stronger structural role than ammonium groups in the lipid-assisted translocation of CPPs across liquid-crystalline cell membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.

The insertion of charged amino acid residues into the hydrophobic part of lipid bilayers is energetically unfavorable yet found in many cationic membrane peptides and protein domains. To understand the mechanism of this translocation, we measured the (13)C-(31)P distances for an Arg-rich beta-hairpin antimicrobial peptide, PG-1, in the lipid membrane using solid-state NMR. Four residues, includ...

متن کامل

Investigation of the Hardening Reaction of Gelatin with 13C Labeled Formaldehyde by Solution and Solid State 13C NMR Spectroscopy

M odel reactions o f the hardening o f gelatin with 13C labeled form aldehyde were m onitored by 13C N M R spectroscopy in solution and in the solid state. In solution prim ary attack o f form aldehyde first forms methylols o f lysine residues and later o f arginine residues, which react to a lysine-arginine crosslink. D uring the drying process o f hardened gelatin, in addition to the lysine-a...

متن کامل

Reversible sheet-turn conformational change of a cell-penetrating peptide in lipid bilayers studied by solid-state NMR.

The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The (13)C chemical shifts of (13)C, (15)N-labeled residues in the peptide indicate a reversible conformational change from beta-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and...

متن کامل

Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating Peptide example.

A novel solid-state NMR technique for identifying the asymmetric insertion depths of membrane proteins in lipid bilayers is introduced. By applying Mn (2+) ions on the outer but not the inner leaflet of lipid bilayers, the sidedness of protein residues in the lipid bilayer can be determined through paramagnetic relaxation enhancement (PRE) effects. Protein-free lipid membranes with one-side Mn ...

متن کامل

Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR.

The protein transduction domain of HIV-1 TAT, TAT(48-60), is an efficient cell-penetrating peptide (CPP) that diffuses across the lipid membranes of cells despite eight cationic Arg and Lys residues. To understand its mechanism of membrane translocation against the free energy barrier, we have conducted solid-state NMR experiments to determine the site-specific conformation, dynamics, and lipid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 48 21  شماره 

صفحات  -

تاریخ انتشار 2009