OVERIDENTIFICATION IN REGULAR MODELS By
نویسندگان
چکیده
In models defined by unconditional moment restrictions, specification tests are possible and estimators can be ranked in terms of efficiency whenever the number of moment restrictions exceeds the number of parameters. We show that a similar relationship between potential refutability of a model and semiparametric efficiency is present in a much broader class of settings. Formally, we show a condition we name local overidentification is required for both specification tests to have power against local alternatives and for the existence of both efficient and inefficient estimators of regular parameters. Our results immediately imply semiparametric conditional moment restriction models are typically locally overidentified, and hence their proper specification is locally testable. We further study nonparametric conditional moment restriction models and obtain a simple characterization of local overidentification in that context. As a result, we are able to determine when nonparametric conditional moment restriction models are locally testable, and when plug-in and two stage estimators of regular parameters are semiparametrically efficient.
منابع مشابه
Overidentification in Regular Models
In models defined by unconditional moment restrictions, specification tests are possible and estimators can be ranked in terms of efficiency whenever the number of moment restrictions exceeds the number of parameters. We show that a similar relationship between potential refutability of a model and semiparametric efficiency is present in a much broader class of settings. Formally, we show a con...
متن کاملOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of th...
متن کاملOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of the ...
متن کاملIdentification and Overidentification of Linear Structural Equation Models
In this paper, we address the problems of identifying linear structural equation models and discovering the constraints they imply. We first extend the half-trek criterion to cover a broader class of models and apply our extension to finding testable constraints implied by the model. We then show that any semi-Markovian linear model can be recursively decomposed into simpler sub-models, resulti...
متن کاملThe Optimal Construction of Instruments in Nonlinear Regression: Implications for Gmm Inference
Interpreted as an instrumental variables estimator, nonlinear least squares constructs its instruments optimally from the explanatory variables using the nonlinear specification of the regression function. This has implications for the use of GMM estimators in nonlinear regression models, including systems of nonlinear regressions, where the explanatory variables are exogenous or predetermined ...
متن کامل