Vitamin A deficiency inhibits intestinal adaptation by modulating apoptosis, proliferation, and enterocyte migration.
نویسندگان
چکیده
In a prior study, vitamin A-deficient rats subjected to submassive small bowel resections did not mount a normal intestinal adaptive response by 10 days postoperatively, although adaptive increases in crypt cell proliferation were not attenuated and there were no differences in apoptotic indexes. The present study was designed to address the mechanisms by which vitamin A status effects adaptation by analyzing proliferation, apoptosis, and enterocyte migration in the early postoperative period (16 and 48 h) in vitamin A-sufficient, -deficient, and partially replenished sham-resected and resected rats. At 16 h postresection, apoptosis was significantly greater in the remnant ileum of resected vitamin A-deficient rats compared with the sufficient controls. Crypt cell proliferation was increased by resection in all dietary groups at both timepoints. However, at 48 h postresection, proliferation was significantly decreased in the vitamin A-deficient and partially replenished rats. By 48 h after resection, vitamin A deficiency also reduced enterocyte migration rates by 44%. This occurred in conjunction with decreased immunoreactive collagen IV at 48 h and 10 days postoperation. Laminin expression was also reduced by deficiency at 10 days postresection, whereas fibronectin and pancadherin were unchanged at 48 h and 10 days. These studies indicate that vitamin A deficiency inhibits intestinal adaptation following partial small bowel resection by reducing crypt cell proliferation, by enhancing early crypt cell apoptosis, and by markedly reducing enterocyte migration rates, which may be related to changes in the expression of collagen IV and other extracellular matrix components.
منابع مشابه
Chronically administered retinoic acid has trophic effects in the rat small intestine and promotes adaptation in a resection model of short bowel syndrome.
Following the loss of functional small bowel surface area, the intestine undergoes a compensatory adaptive response. The observation that adaptation is inhibited in vitamin A-deficient rats following submassive intestinal resection suggested that vitamin A is required for this response and raised the possibility that exogenous vitamin A could augment adaptation. Therefore, to directly assess wh...
متن کاملIGF-I augments resection-induced mucosal hyperplasia by altering enterocyte kinetics.
Our objective was to determine if exogenous insulin-like growth factor-I (IGF-I) augments the adaptive growth response to mid small bowel resection in association with changes in enterocyte kinetics. We determined structural adaptation and concomitant changes in enterocyte proliferation, apoptosis, and migration of the jejunum in growing, parenterally fed rats after mid small bowel resection or...
متن کاملGenistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells
Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...
متن کاملIntestinal adaptation and enterocyte apoptosis following small bowel resection is p53 independent.
Adaptation following small bowel resection (SBR) signals enterocyte proliferation and apoptosis. Because p53-induced p21 waf1/cip1 may be important for apoptosis in many cells, we hypothesized that these genes are required for increased enterocyte apoptosis during adaptation. Male C57BL/6 (wild-type) or p53-null mice underwent 50% proximal SBR or sham operation (bowel transection-reanastomosis)...
متن کاملIncreased apoptosis and accelerated epithelial migration following inhibition of hedgehog signaling in adaptive small bowel postresection.
The intestinal epithelium undergoes a marked adaptive response following loss of functional small bowel surface area characterized by increased crypt cell proliferation and increased enterocyte migration from crypt to villus tip, resulting in villus hyperplasia and enhanced nutrient absorption. Hedgehog (Hh) signaling plays a critical role in regulating epithelial-mesenchymal interactions durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 285 2 شماره
صفحات -
تاریخ انتشار 2003