Detection of an involvement of the human mismatch repair genes hMLH1 and hMSH2 in nucleotide excision repair is dependent on UVC fluence to cells.
نویسندگان
چکیده
There is conflicting evidence for the role of the mismatch repair (MMR) genes hMLH1 and hMSH2 in the transcription-coupled repair (TCR) pathway of nucleotide excision repair. In the present work, we have examined the role of these MMR genes in nucleotide excision repair using two reporter gene assays. AdHCMVlacZ is a replication-deficient recombinant adenovirus that expresses the beta-galactosidase reporter gene under the control of the human cytomegalovirus immediate early promoter. We have reported previously a reduced host cell reactivation (HCR) for beta-galactosidase expression of UVC-irradiated AdHCMVlacZ in TCR-deficient Cockayne syndrome (CS) fibroblasts compared with normal fibroblasts, indicating that HCR depends, at least in part, on TCR. In addition, we have reported that UVC-enhanced expression of the undamaged reporter gene is induced at lower UVC fluences to cells and at higher levels after low UVC fluences in TCR-deficient compared with normal human fibroblasts, suggesting that persistent damage in active genes triggers increased activity from the human cytomegalovirus-driven reporter construct. We have examined HCR and UV-enhanced expression of the reporter gene in hMLH1-deficient HCT116 human colon adenocarcinoma cells and HCT116-chr3 cells (the MMR-proficient counterpart of HCT116) as well as hMSH2-deficient LoVo human colon adenocarcinoma cells and their hMSH2-proficient counterpart SW480 cells. We show a greater UV-enhanced expression of the undamaged reporter gene after low UVC exposure in HCT116 compared with HCT116-chr3 cells and in LoVo compared with SW480 cells. We show also a reduced HCR in HCT116 compared with HCT116-chr3 cells and in LoVo compared with SW480 cells. However, the reduction in HCR was less or absent when cells were pretreated with UVC. These results suggest that detection of an involvement of hMLH1 and hMSH2 in TCR is dependent on UVC (254 nm) fluence to cells.
منابع مشابه
Differential involvement of the human mismatch repair proteins, hMLH1 and hMSH2, in transcription-coupled repair.
Defects in DNA mismatch repair have been associated with both hereditary and sporadic forms of cancer. Recently, it has been shown that human cell lines deficient in mismatch repair were also defective in the transcription-coupled repair (TCR) of UV-induced DNA damage. We examined whether TCR of ionizing radiation-induced DNA damage also requires the genes involved in DNA mismatch repair. Cells...
متن کاملReduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2.
Germ line mutations in the mismatch repair (MMR) genes hMSH2 and hMLH1 account for approximately 98% of hereditary non-polyposis colorectal cancers. In addition, there is increasing evidence for an involvement of MMR gene expression in the response of cells to UV-induced skin cancer. The link between MMR and skin cancer suggests an involvement of MMR gene expression in the response of skin cell...
متن کاملApoptosis induced by overexpression of hMSH2 or hMLH1.
Mutations of the mismatch repair genes hMSH2 and hMLH1 have been found in a high proportion of individuals with hereditary nonpolyposis colon cancer (HNPCC), establishing the link between mismatch repair and cancer. Tumor cell lines that are deficient in mismatch repair develop a mutator phenotype that appears to drive the accumulation of mutations required for tumor development. However, mutat...
متن کاملCell cycle regulation of the human DNA mismatch repair genes hMSH2, hMLH1, and hPMS2.
Hereditary nonpolyposis colorectal cancer is a cancer susceptibility syndrome that has been found to be caused by mutations in any of several genes involved in DNA mismatch repair, including hMSH2, hMLH1, or hPMS2. Recent reports have suggested that hMSH2 and hMLH1 have a role in the regulation of the cell cycle. To determine if these genes are cell cycle regulated, we examined their mRNA and p...
متن کاملTransient mismatch repair gene transfection for functional analysis of genetic hMLH1 and hMSH2 variants.
BACKGROUND Germline mutations in the mismatch repair (MMR) genes hMLH1 and hMSH2 can cause hereditary non-polyposis colorectal cancer (HNPCC). However, the functional in vitro analysis of hMLH1 and hMSH2 mutations remains difficult. AIMS To establish an in vitro method for the functional characterisation of hMLH1 and hMSH2 mutations. METHODS hMLH1 and hMSH2 wild type (wt) genes and several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 11 شماره
صفحات -
تاریخ انتشار 2004