Well-Rounded Zeta-Function of Planar Arithmetic Lattices

نویسنده

  • LENNY FUKSHANSKY
چکیده

We investigate the properties of the zeta-function of well-rounded sublattices of a fixed arithmetic lattice in the plane. In particular, we show that this function has abscissa of convergence at s = 1 with a real pole of order 2, improving upon a result of [11]. We use this result to show that the number of well-rounded sublattices of a planar arithmetic lattice of index less or equal N is O(N logN) as N → ∞. To obtain these results, we produce a description of integral well-rounded sublattices of a fixed planar integral wellrounded lattice and investigate convergence properties of a zeta-function of similarity classes of such lattices, building on the results of [7].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Arithmetic Lattices in the Plane

We investigate similarity classes of arithmetic lattices in the plane. We introduce a natural height function on the set of such similarity classes, and give asymptotic estimates on the number of all arithmetic similarity classes, semi-stable arithmetic similarity classes, and well-rounded arithmetic similarity classes of bounded height as the bound tends to infinity. We also briefly discuss so...

متن کامل

Well - Rounded Integral Lattices in Dimension Two

A lattice is called well-rounded if its minimal vectors span the corresponding Eucildean space. In this paper we completely describe well-rounded full-rank sublattices of Z 2 , as well as their determinant and minima sets. We show that the determinant set has positive density, deriving an explicit lower bound for it, while the minima set has density 0. We also produce formulas for the number of...

متن کامل

On Distribution of Well - Rounded Sublattices

A lattice is called well-rounded if its minimal vectors span the corresponding Euclidean space. In this paper we completely describe well-rounded full-rank sublattices of Z 2 , as well as their determinant and minima sets. We show that the determinant set has positive density, deriving an explicit lower bound for it, while the minima set has density 0. We also produce formulas for the number of...

متن کامل

On Distribution of Well-Rounded Sublattices of Z2

A lattice is called well-rounded if its minimal vectors span the corresponding Euclidean space. In this paper we completely describe wellrounded full-rank sublattices of Z, as well as their determinant and minima sets. We show that the determinant set has positive density, deriving an explicit lower bound for it, while the minima set has density 0. We also produce formulas for the number of suc...

متن کامل

On Distribution of Well-rounded Sublattices of Z

A lattice is called well-rounded if its minimal vectors span the corresponding Euclidean space. In this paper we completely describe wellrounded full-rank sublattices of Z, as well as their determinant and minima sets. We show that the determinant set has positive density, deriving an explicit lower bound for it, while the minima set has density 0. We also produce formulas for the number of suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012