Structural Characterization of Biofunctionalized Gold Nanoparticles by Ultrahigh-Resolution Mass Spectrometry
نویسندگان
چکیده
Biofunctionalized gold nanoparticles (AuNPs) enable innovative translational research and development in biomedicine. Biomolecules such as peptides, proteins, lipids, and carbohydrates can be assembled onto AuNPs to yield nanomaterials with unique properties for applications in imaging, photothermal therapy, vaccination strategies, and drug delivery. The characterization of functionalized AuNPs still remains an analytical challenge that normally requires the combination of multiple techniques. Laser desorption/ionization (LDI) and matrix-assisted LDI (MALDI) have been applied successfully in combination with time-of-flight (TOF) mass spectrometry (MS) for the analysis of the surface chemistry of AuNPs functionalized with synthetic ligands, however only for ligands with a molecular mass limited to 1000 Da. TOF-MS-based approaches in addition exhibit limited performance in terms of mass resolution and MS/MS possibilities. To overcome these limitations, we designed an approach for the analysis of AuNPs based on ultrahigh resolution Fourier transform ion cyclotron resonance (FTICR) MS and a combination of LDI and MALDI. To illustrate the performance of the method, we present a comprehensive characterization of the surface chemistry of AuNPs conjugated via a thiol-ending linker to either the ovalbumin peptide (OVA 323-339), the Lewis X antigen (Galβ1-4[Fucα1-3]GlcNAcβ1) trisaccharide, the tetramannoside Manα1-2Manα1-2Manα1-3Manα1, or a mixture of both carbohydrates. Collision-induced dissociation (CID) was used to characterize the structure of pseudomolecular ions generated by LDI/MALDI in-depth. These included [M + H]+ and [M + Na]+, and importantly also [M + Au]+ and [M + 2Au-H]+ ions. This first observation of gold-containing pseudomolecular ions provides direct evidence for the Au-conjugation of ligands. In addition, we show the applicability of the method to monitor proteolytic cleavage of peptides that are conjugated to the AuNP surface. The presented LDI/MALDI-FTICR-MS and MS/MS approach will be applicable to the characterization of a wide range of functionalized AuNPs.
منابع مشابه
Structural characterization of water-soluble atmospheric organic matter by ultrahigh-resolution mass spectrometry
Structural characterization of water-soluble atmospheric organic matter by ultrahigh-resolution mass spectrometry", Master's Thesis,
متن کاملUsing biofunctionalized nanoparticles to probe pathogenic bacteria.
In this paper, we report a method for fabricating biofunctionalized nanoparticles by attaching human immunoglobulin (IgG) onto their surfaces through either electrostatic interactions or covalent binding. We found that these IgG-presenting nanoparticles can bind selectively to the cell walls of pathogens that contain IgG-binding sites based on the investigation of transmission electron microsco...
متن کاملCatechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction
An eco-friendly approach is described for the green synthesis of gold nanoparticles using catechin as a reducing and capping agent. The reaction occurred at room temperature within 1 h without the use of any external energy and an excellent yield (99%) was obtained, as determined by inductively coupled plasma mass spectrometry. Various shapes of gold nanoparticles with an estimated diameter of ...
متن کاملDetailed structural elucidation of polyesters and acrylates using Fourier transform mass spectrometry
The detailed structural characterization of complex polymer architectures, like copolymers and polymer mixtures, by mass spectrometry presents a challenge. Even though soft ionization analyses revolutionized the characterization of large molecules and provided a means for determining the polymer's molecular weight distribution, polydispersity, and end groups, full microstructure elucidation and...
متن کاملStructural Characterization of Polymers by MALDI Spiral-TOF Mass Spectrometry Combined with Kendrick Mass Defect Analysis
High-resolution mass spectrometry (HRMS) continues to play an important role in the compositional characterization of larger organic molecules. In the field of polymer characterization, however, the application of HRMS has made only slow progress because of lower compatibility between matrix-assisted laser desorption/ionization (MALDI) and ultrahigh-resolution Fourier transform ion cyclotron re...
متن کامل