The well-posedness issue for an inviscid zero-Mach number system in general Besov spaces

نویسندگان

  • Francesco Fanelli
  • Xian Liao
چکیده

The present paper is devoted to the study of a zero-Mach number system with heat conduction but no viscosity. We work in the framework of general non-homogeneous Besov spaces B p,r(R), with p ∈ [2, 4] and for any d ≥ 2, which can be embedded into the class of globally Lipschitz functions. We prove a local in time well-posedness result in these classes for general initial densities and velocity fields. Moreover, we are able to show a continuation criterion and a lower bound for the lifespan of the solutions. The proof of the results relies on Littlewood-Paley decomposition and paradifferential calculus, and on refined commutator estimates in Chemin-Lerner spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the well-posedness of the full low-Mach number limit system in general critical Besov spaces

This work is devoted to the well-posedness issue for the low-Mach number limit system obtained from the full compressible Navier-Stokes system, in the whole space R with d ≥ 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type Ḃ p,1. If, in addition, t...

متن کامل

The well-posedness issue in endpoint spaces for an inviscid low-Mach number limit system

The present paper is devoted to the well-posedness issue for a low-Mach number limit system with heat conduction but no viscosity. We will work in the framework of general Besov spaces B p,r(R), d ≥ 2, which can be embedded into the class of Lipschitz functions. Firstly, we consider the case of p ∈ [2, 4], with no further restrictions on the initial data. Then we tackle the case of any p ∈ ]1,∞...

متن کامل

Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities

In this paper, we prove the local well-posedness in critical Besov spaces for the compressible Navier-Stokes equations with density dependent viscosities under the assumption that the initial density is bounded away from zero.

متن کامل

Existence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph

The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...

متن کامل

Well-posedness for the viscous shallow water equations in critical spaces

We investigate the well-posedness for the 2D viscous shallow water equations in the theory of compressible fluid. Making use of the Fourier frequency localization and Bony paraproduct decomposition, closing to a stable equilibrium h0, we obtain the local well-posedness for general initial data u0 and the global well-posedness for small initial data u0 in certain scaling invariant Besov spaces, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2015