Beltrami’s Models of Non-euclidean Geometry
نویسنده
چکیده
In two articles published in 1868 and 1869, Eugenio Beltrami provided three models in Euclidean plane (or space) for non-Euclidean geometry. Our main aim here is giving an extensive account of the two articles’ content. We will also try to understand how the way Beltrami, especially in the first article, develops his theory depends on a changing attitude with regards to the definition of surface. In the end, an example from contemporary mathematics shows how the boundary at infinity of the non-Euclidean plane, which Beltrami made intuitively and mathematically accessible in his models, made non-Euclidean geometry a natural tool in the study of functions defined on the real line (or on the circle).
منابع مشابه
Spatial Analysis in curved spaces with Non-Euclidean Geometry
The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...
متن کاملتبیین الگوی نااقلیدسی در برنامه ریزی شهری
With domination of Kant's epistemology and instrumental reason in social science and human geography, interpretation of space have been based on neo physics that often it is equivalent with intuitive and physical experience and the place of capital and it's reproduction. Therefore we firstly have represented of ontological transform of space concept and by the way we enumerate the c...
متن کاملHyperbolic geometry for colour metrics.
It is well established from both colour difference and colour order perpectives that the colour space cannot be Euclidean. In spite of this, most colour spaces still in use today are Euclidean, and the best Euclidean colour metrics are performing comparably to state-of-the-art non-Euclidean metrics. In this paper, it is shown that a transformation from Euclidean to hyperbolic geometry (i.e., co...
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملOn the metric triangle inequality
A non-contradictible axiomatic theory is constructed under the local reversibility of the metric triangle inequality. The obtained notion includes the metric spaces as particular cases and the generated metric topology is T$_{1}$-separated and generally, non-Hausdorff.
متن کامل