All (qubit) decoherences: Complete characterization and physical implementation
نویسنده
چکیده
We investigate decoherence channels that are modelled as a sequence of collisions of a quantum system (e.g., a qubit) with particles (e.g., qubits) of the environment. We show that collisions induce decoherence when a bi-partite interaction between the system qubit and an environment (reservoir) qubit is described by the controlled-U unitary transformation (gate). We characterize decoherence channels and in the case of a qubit we specify the most general decoherence channel and derive a corresponding master equation. Finally, we analyze entanglement that is generated during the process of decoherence between the system and its environment.
منابع مشابه
Experimental characterization of quantum dynamics through many-body interactions.
We report on the implementation of a quantum process tomography technique known as direct characterization of quantum dynamics applied on coherent and incoherent single-qubit processes in a system of trapped (40)Ca(+) ions. Using quantum correlations with an ancilla qubit, direct characterization of quantum dynamics reduces substantially the number of experimental configurations required for a ...
متن کاملCharacterization of non-universal two-qubit Hamiltonians
It is known that almost all 2-qubit gates are universal for quantum computing (Lloyd 1995; Deutsch, Barenco, Eckert 1995). However, an explicit characterization of non-universal 2-qubit gates is not known. We consider a closely related problem of characterizing the set of non-universal 2-qubit Hamiltonians. We call a 2-qubit Hamiltonian n-universal if, when applied on different pairs of qubits,...
متن کاملConstructing Qubits in Physical Systems
The notion of a qubit is ubiquitous in quantum information processing. In spite of the simple abstract definition of qubits as two-state quantum systems, identifying qubits in physical systems is often unexpectedly difficult. There are an astonishing variety of ways in which qubits can emerge from devices. What essential features are required for an implementation to properly instantiate a qubi...
متن کاملTwo-qubit state tomography using a joint dispersive readout.
Quantum state tomography is an important tool in quantum information science for complete characterization of multiqubit states and their correlations. Here we report a method to perform a joint simultaneous readout of two superconducting qubits dispersively coupled to the same mode of a microwave transmission line resonator. The nonlinear dependence of the resonator transmission on the qubit s...
متن کاملExperimental implementation of encoded logical qubit operations in a perfect quantum error correcting code.
Large-scale universal quantum computing requires the implementation of quantum error correction (QEC). While the implementation of QEC has already been demonstrated for quantum memories, reliable quantum computing requires also the application of nontrivial logical gate operations to the encoded qubits. Here, we present examples of such operations by implementing, in addition to the identity op...
متن کامل