PARVA Promotes Metastasis by Modulating ILK Signalling Pathway in Lung Adenocarcinoma
نویسندگان
چکیده
α-parvin (PARVA) is known to be involved in the linkage of integrins, regulation of actin cytoskeleton dynamics and cell survival. However, the role that PARVA plays in cancer progression remains unclear. Here, using a lung cancer invasion cell line model and expression microarrays, we identify PARVA as a potential oncogene. The overexpression of PARVA increased cell invasion, colony-forming ability and endothelial cell tube formation. By contrast, knockdown of PARVA inhibited invasion and tube formation in vitro. Overexpression of PARVA also promoted tumorigenicity, angiogenesis and metastasis in in vivo mouse models. To explore the underlying mechanism, we compared the expression microarray profiles of PARVA-overexpressing cells with those of control cells to identify the PARVA-regulated signalling pathways. Pathway analysis showed that eight of the top 10 pathways are involved in invasion, angiogenesis and cell death. Next, to identify the direct downstream signalling pathway of PARVA, 371 significantly PARVA-altered genes were analysed further using a transcription factor target model. Seven of the top 10 PARVA-altered transcription factors shared a common upstream mediator, ILK. Lastly, we found that PARVA forms a complex with SGK1 and ILK to enhance the phosphorylation of ILK, which led to the phosphorylation of Akt and GSK3β. Notably, the inactivation of ILK reversed PARVA-induced invasion. Taken together, our findings imply that PARVA acts as an oncogene by activating ILK, and that this activation is followed by the activation of Akt and inhibition of GSK3β. To our knowledge, this is the first study to characterize the role of PARVA in lung cancer progression.
منابع مشابه
GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment
Some polypeptide N-acetyl-galactosaminyltransferases (GALNTs) are associated with cancer, but their function in organ-specific metastasis remains unclear. Here, we report that GALNT14 promotes breast cancer metastasis to the lung by enhancing the initiation of metastatic colonies as well as their subsequent growth into overt metastases. Our results suggest that GALNT14 augments the self-renewal...
متن کاملLong non‐coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are playing critical roles in neurogenesis, yet the underlying molecular mechanisms remain largely elusive. Neurite outgrowth is an early step in neuronal differentiation and regeneration. Using in vitro differentiation of neuroblastoma-derived Neuro-2a (N2a) cell as a model, we performed expression profiling to identify lncRNAs...
متن کاملMetastasis of Lung Adenocarcinoma to the Gingiva: A Rare Case Report
Metastatic tumors account for 1% of all oral malignancies. Metastasis to jaw bones is common, particularly in the mandible, rare in the oral soft tissues, and account for only 0.1% of oral malignancies. The majority of metastatic cases (70%) reported in the literature have primary tumors located in the lung, breast, kidney, and colon. Metastasis is a biological complex process that involves det...
متن کاملGABRA3 promotes lymphatic metastasis in lung adenocarcinoma by mediating upregulation of matrix metalloproteinases
Tumor metastasis is the main reason for the poor prognosis of lung cancer patients. The GABAA receptor subunit GABRA3 is reportedly upregulated in lung cancer. Herein, we show that high GABRA3 protein expression in lung adenocarcinoma correlated positively with disease stage, lymphatic metastasis status and poor patient survival. In addition, GABRA3 induced MMP-2 and MMP-9 expression through ac...
متن کاملTumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression
Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) t...
متن کامل