Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines
نویسندگان
چکیده
Abstract: The Organic Rankine Cycle (ORC) is regarded as a suitable way to recover waste heat from gaseous fuel internal combustion engines. As waste heat recovery systems (WHRS) have always been designed based on rated working conditions, while engines often work under part-load conditions, it is quite significant to analyze the part-load performance and corresponding operation strategy of ORC systems. This paper presents a dynamic model of ORC with a medium cycle used for a large gaseous fuel engine and analyzes the effect of adjustable parameters on the system performance, giving effective control directions under various conditions. The results indicate that the intermediary fluid mass flow rate has nearly no effect on the output power and thermal efficiency of the ORC, while the mass flow rate of working fluid has a great effect on them. In order to get a better system performance under different working conditions, the system should be operated with the working fluid mass flow rate as large as possible, but with a slight degree of superheating. Then, with the control of constant superheat degree at the end of the heating process, the performance of the combined system that consists of ORC and the engine at steady state under seven typical working conditions is also analyzed. The results indicate that the energy-saving effect of WHRS becomes worse and worse as the working condition decreases. Especially at 40% working condition the WHRS nearly has no energy-saving effect anymore.
منابع مشابه
Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery
The Organic Rankine Cycle (ORC) has been proved a promising technique to exploit waste heat from Internal Combustion Engines (ICEs). Waste heat recovery systems have usually been designed based on engine rated working conditions, while engines often operate under part load conditions. Hence, it is quite important to analyze the off-design performance of ORC systems under different engine loads....
متن کاملDynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles
Organic Rankine Cycles (ORCs) are particularly suitable for recovering energy from low-grade heat sources. This paper describes the behavior of a small-scale ORC used to recover energy from a variable flow rate and temperature waste heat source. A traditional static model is unable to predict transient behavior in a cycle with a varying thermal source, whereas this capability is essential for s...
متن کاملTheoretical Investigation of Combustion Process in Dual Fuel Engines at Part Load Considering the Effect of Exhaust Gas Recirculation
The dual fuel engines at part loads inevitably suffer from lower thermal efficiency and higher carbon monoxide and unburned fuel emission. This work is carried out to investigate combustion characteristics of a dual fuel (dieselgas) engine at part loads, using a single zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. The authors developed software in ...
متن کاملIncreasing waste heat recovery from an internal combustion engine by a dual-loop non-organic Rankine Cycle
This research proposes the combination of a dual-loop non-organic Rankine cycle (DNORC) with an internal combustion engine to increase the output power of the recovery system by focusing on the increase in the energy input and system efficiency. In doing so, it investigates the strategy of increasing the mean effective temperature of heat addition in the high-temperature Rankine cycle (HTRC) (t...
متن کاملModeling and control of Rankine based waste heat recovery systems for heavy duty trucks
This paper presents a control oriented model development for waste heat recovery Rankine based control systems in heavy duty trucks. Waste heat recovery systems, such as Rankine cycle, are promising solutions to improve the fuel efficiency of heavy duty engines. Due to the highly transient operating conditions, improving the control strategy of those systems is an important step to their integr...
متن کامل