Persistent Betti numbers of random Čech complexes
نویسندگان
چکیده
We study the persistent homology of random Čech complexes. Generalizing a method of Penrose for studying random geometric graphs, we first describe an appropriate theoretical framework in which we can state and address our main questions. Then we define the kth persistent Betti number of a random Čech complex and determine its asymptotic order in the subcritical regime. This extends a result of Kahle on the asymptotic order of the ordinary kth Betti number of such complexes to the persistent setting.
منابع مشابه
Random Geometric Complexes
We study the expected topological properties of Čech and Vietoris-Rips complexes built on randomly sampled points in R. These are, in some cases, analogues of known results for connectivity and component counts for random geometric graphs. However, an important difference in this setting is that homology is not monotone in the underlying parameter. In the sparse range, we compute the expectatio...
متن کاملOn a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کاملPersistent Homology of Collaboration Networks
We apply persistent homology to four collaboration networks. We show that the intervals for the zeroth and first Betti numbers correspond to tangible features of the structure of these networks. Finally, we use persistent homology to distinguish collaboration networks from similar random networks.
متن کاملBetti numbers in multidimensional persistent homology are stable functions
Multidimensional persistence mostly studies topological features of shapes by analyzing the lower level sets of vector-valued functions, called filtering functions. As is well known, in the case of scalar-valued filtering functions, persistent homology groups can be studied through their persistent Betti numbers, i.e. the dimensions of the images of the homomorphisms induced by the inclusions o...
متن کاملVietoris-Rips and Cech Complexes of Metric Gluings
We study Vietoris–Rips and Čech complexes of metric wedge sums and metric gluings. We show that the Vietoris–Rips (resp. Čech) complex of a wedge sum, equipped with a natural metric, is homotopy equivalent to the wedge sum of the Vietoris–Rips (resp. Čech) complexes. We also provide generalizations for certain metric gluings, i.e. when two metric spaces are glued together along a common isometr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.08376 شماره
صفحات -
تاریخ انتشار 2018