Histone lysine-crotonylation in acute kidney injury
نویسندگان
چکیده
Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation may modulate kidney injury. Histone crotonylation was studied in cultured murine proximal tubular cells and in kidneys from mice with AKI induced by folic acid or cisplatin. Histone lysine-crotonylation was observed in tubular cells from healthy murine and human kidney tissue. Kidney tissue histone crotonylation increased during AKI. This was reproduced by exposure to TWEAK in cultured tubular cells. Specifically, ChIP-seq disclosed enrichment of histone crotonylation at the genes encoding the mitochondrial biogenesis regulator PGC-1α and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular cells and in AKI kidney tissue. To assess the role of crotonylation in kidney injury, crotonate was used to increase histone crotonylation in cultured tubular cells or in the kidneys in vivo. Crotonate increased the expression of PGC-1α and sirtuin-3, and decreased CCL2 expression in cultured tubular cells and healthy kidneys. Systemic crotonate administration protected from experimental AKI, preventing the decrease in renal function and in kidney PGC-1α and sirtuin-3 levels as well as the increase in CCL2 expression. For the first time we have
منابع مشابه
Histone lysine crotonylation during acute kidney injury in mice
Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation might modulate kidney injury. Histone crotonylation was st...
متن کاملIdentification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification
We report the identification of 67 previously undescribed histone modifications, increasing the current number of known histone marks by about 70%. We further investigated one of the marks, lysine crotonylation (Kcr), confirming that it represents an evolutionarily-conserved histone posttranslational modification. The unique structure and genomic localization of histone Kcr suggest that it is m...
متن کاملReading and Interpreting the Histone Acylation Code
Decades of research has explored the epigenetic control of gene expression and the impact of histone post-translational modifications (PTMs), such as acetylation, on chromatin remodeling. Indeed, the writers, readers, and erasers of lysine acetylation are increasingly well understood. Recent studies have added crotonylation, butyrylation, and propionylation to the types of acylations by which h...
متن کاملThe Taf14 YEATS domain is a reader of histone crotonylation
The discovery of new histone modifications is unfolding at startling rates; however, the identification of effectors capable of interpreting these modifications has lagged behind. Here we report the YEATS domain as an effective reader of histone lysine crotonylation, an epigenetic signature associated with active transcription. We show that the Taf14 YEATS domain engages crotonyllysine via a un...
متن کاملEpigenetic bystander-like effects of stroke in somatic organs
Clinical evidence suggests that stroke may lead to damage of somatic organs. This communication of damage is well- established in the case of exposure to genotoxic agents is termed a bystander effect. Genotoxic stress-induced bystander effects are epigenetically mediated. Here we investigated whether stroke causes epigenetic bystander-like effects in the liver, kidney and heart. We found a sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016