Strongly Essential Flows on Irreducible Parabolic Geometries
نویسندگان
چکیده
We study the local geometry of irreducible parabolic geometries admitting strongly essential flows; these are flows by local automorphisms with higher-order fixed points. We prove several new rigidity results, and recover some old ones for projective and conformal structures, which show that in many cases the existence of a strongly essential flow implies local flatness of the geometry on an open set having the fixed point in its closure. For almost c-projective and almost quaternionic structures we can moreover show flatness of the geometry on a neighborhood of the fixed point.
منابع مشابه
Essential Killing Fields of Parabolic Geometries
We study vector fields generating a local flow by automorphisms of a parabolic geometry with higher order fixed points. We develop general tools extending the techniques of [1], [2], and [3], and we apply them to almost Grassmannian, almost quaternionic, and contact parabolic geometries, including CR structures. We obtain descriptions of the possible dynamics of such flows near the fixed point ...
متن کاملEssential Killing Fields of Parabolic Geometries: Projective and Conformal Structures
We use the general theory developed in our article [1] in the setting of parabolic geometries to reprove known results on special infinitesimal automorphisms of projective and conformal geometries.
متن کاملSome bounds on unitary duals of classical groups - non-archimeden case
We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups. Roughly, they can show up only if the central character of the inducing irreducible cuspidal representation is dominated by the square root of the modular character of the minimal parabolic subgroup. For unitarizable subquotients...
متن کاملWeakly irreducible ideals
Let $R$ be a commutative ring. The purpose of this article is to introduce a new class of ideals of R called weakly irreducible ideals. This class could be a generalization of the families quasi-primary ideals and strongly irreducible ideals. The relationships between the notions primary, quasi-primary, weakly irreducible, strongly irreducible and irreducible ideals, in different rings, has bee...
متن کاملSolvable, Globally Integral, Ultra-parabolic Monoids of Simply Kummer Functors and the Measurability of Right-everywhere Artinian Numbers
Assume we are given an irreducible matrix P . Recent interest in hyper-algebraically anti-local, additive hulls has centered on extending scalars. We show that |y′′| > π. It is essential to consider that κ may be normal. It would be interesting to apply the techniques of [28] to semi-Artin–Levi-Civita polytopes.
متن کامل