Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries
نویسندگان
چکیده
A flexible membrane consisting of MoS2/carbon nanofibers has been fabricated by a simple electrospinning method. MoS2 nanosheets are uniformly encapsulated in the inter-connected carbon nanofibers with diameters of ~150 nm. When evaluated as a binder-free electrode for sodium-ion batteries, the as-obtained electrode demonstrates high performances, including high reversible capacity of 381.7 mA h g(-1) at 100 mA g(-1) and superior rate capability (283.3, 246.5 and 186.3 mA h g(-1) at 0.5, 1 and 2 A g(-1), respectively). Most importantly, the binder-free electrode made of MoS2 and carbon nanofibers can still deliver a charge capacity of 283.9 mA h g(-1) after 600 cycles at a current density of 100 m A g(-1), indicating a very promising anode for long-life SIBs.
منابع مشابه
Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries
Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphit...
متن کاملGermanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
Germanium is a promising high-capacity anode material for lithium ion batteries, but still suffers from poor cyclability due to its huge volume variation during the Li-Ge alloy/dealloy process. Here we rationally designed a flexible and self-supported electrode consisting of Ge nanoparticles encapsulated in carbon nanofibers (Ge-CNFs) by using a facile electrospinning technique as potential ano...
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملSnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملBinder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کامل