Variational Inference in Mixed Probabilistic Submodular Models

نویسندگان

  • Josip Djolonga
  • Sebastian Tschiatschek
  • Andreas Krause
چکیده

We consider the problem of variational inference in probabilistic models with both log-submodular and log-supermodular higher-order potentials. These models can represent arbitrary distributions over binary variables, and thus generalize the commonly used pairwise Markov random fields and models with log-supermodular potentials only, for which efficient approximate inference algorithms are known. While inference in the considered models is #P-hard in general, we present efficient approximate algorithms exploiting recent advances in the field of discrete optimization. We demonstrate the effectiveness of our approach in a large set of experiments, where our model allows reasoning about preferences over sets of items with complements and substitutes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling from Probabilistic Submodular Models

Submodular and supermodular functions have found wide applicability in machine learning, capturing notions such as diversity and regularity, respectively. These notions have deep consequences for optimization, and the problem of (approximately) optimizing submodular functions has received much attention. However, beyond optimization, these notions allow specifying expressive probabilistic model...

متن کامل

On the Links between Probabilistic Graphical Models and Submodular Optimisation. (Liens entre modèles graphiques probabilistes et optimisation sous-modulaire)

A probabilistic graphical model encodes conditional independences among random variables, which is related to factorisable distributions. Moreover, the entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functio...

متن کامل

From MAP to Marginals: Variational Inference in Bayesian Submodular Models

Submodular optimization has found many applications in machine learning andbeyond. We carry out the first systematic investigation of inference in probabilis-tic models defined through submodular functions, generalizing regular pairwiseMRFs and Determinantal Point Processes. In particular, we present L-FIELD, avariational approach to general log-submodular and log-supermodul...

متن کامل

Sparse Submodular Probabilistic PCA

We propose a novel approach for sparse probabilistic principal component analysis, that combines a low rank representation for the latent factors and loadings with a novel sparse variational inference approach for estimating distributions of latent variables subject to sparse support constraints. Inference and parameter estimation for the resulting model is achieved via expectation maximization...

متن کامل

Maximizing submodular functions using probabilistic graphical models

We consider the problem of maximizing submodular functions; while this problem is known to be NP-hard, several numerically efficient local search techniques with approximation guarantees are available. In this paper, we propose a novel convex relaxation which is based on the relationship between submodular functions, entropies and probabilistic graphical models. In a graphical model, the entrop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016