Targeting the ACE2 and Apelin Pathways Are Novel Therapies for Heart Failure: Opportunities and Challenges

نویسندگان

  • Seyyed M. R. Kazemi-Bajestani
  • Vaibhav B. Patel
  • Wang Wang
  • Gavin Y. Oudit
چکیده

Angiotensin-converting enzyme 2 (ACE2)/Ang II/Ang 1-7 and the apelin/APJ are two important peptide systems which exert diverse effects on the cardiovascular system. ACE2 is a key negative regulator of the renin-angiotensin system (RAS) where it metabolizes angiotensin (Ang) II into Ang 1-7, an endogenous antagonist of Ang II. Both the prolonged activation of RAS and the loss of ACE2 can be detrimental as they lead to functional deterioration of the heart and progression of cardiac, renal, and vascular diseases. Recombinant human ACE2 in an animal model of ACE2 knockout mice lowers Ang II. These interactions neutralize the pressor and subpressor pathologic effects of Ang II by producing Ang 1-7 levels in vivo, that might be cardiovascular protective. ACE2 hydrolyzes apelin to Ang II and, therefore, is responsible for the degradation of both peptides. Apelin has emerged as a promising peptide biomarker of heart failure. The serum level of apelin in cardiovascular diseases tends to be decreased. Apelin is recognized as an imperative controller of systemic blood pressure and myocardium contractility. Dysregulation of the apelin/APJ system may be involved in the predisposition to cardiovascular diseases, and enhancing apelin action may have important therapeutic effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17

The apelin and angiotensin family of peptides have a wide range of related physiological and pathophysiological effects on the heart and vasculature. Apelin is synthesized as a precursor 77 amino acid pre-pro-peptide and is subsequently processed into a family of apelin peptides, with pyrapelin 13 and apelin 17 being the dominant apelin peptides found in vivo. Apelin acts on the apelin receptor...

متن کامل

[Pyr1]Apelin-13(1–12) Is a Biologically Active ACE2 Metabolite of the Endogenous Cardiovascular Peptide [Pyr1]Apelin-13

Aims: Apelin is a predicted substrate for ACE2, a novel therapeutic target. Our aim was to demonstrate the endogenous presence of the putative ACE2 product [Pyr1]apelin-13(1-12) in human cardiovascular tissues and to confirm it retains significant biological activity for the apelin receptor in vitro and in vivo. The minimum active apelin fragment was also investigated. Methods and Results: [Pyr...

متن کامل

Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17: Physiological Effects in the Cardiovascular System.

Apelin peptides mediate beneficial effects on the cardiovascular system and are being targeted as potential new drugs. However, apelin peptides have extremely short biological half-lives, and improved understanding of apelin peptide metabolism may lead to the discovery of biologically stable analogues with therapeutic potential. We examined the ability of angiotensin-converting enzyme 2 (ACE2) ...

متن کامل

Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK1/2 and cell proliferation via Gαq-mediated mechanism

Dimerization of G protein-coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin-converting enzyme 2 ...

متن کامل

Unlocking the Therapeutic Potential of Apelin.

Apelin was identified in 1998 as the endogenous ligand for the then orphan G-protein–coupled receptor, APJ, now renamed the apelin receptor. Widely expressed in the central nervous system and peripheral tissues, the apelin system participates in a diverse array of processes, including glucose metabolism, immune function, and fluid homeostasis. However, its principal physiological role seems to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012