Correlating elastic properties and molecular organization of an ionic organic nanostructure.

نویسندگان

  • Jeremy R Eskelsen
  • Yun Qi
  • Samantha Schneider-Pollack
  • Samantha Schmitt
  • K W Hipps
  • Ursula Mazur
چکیده

Mechanical and structural properties of ionically self-assembled nanostructures of meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) and meso-tetra(4-pyridyl)porphyrin (TPyP) are presented. This is the first time that elastic modulus of an ionic porphyrin nanostructure has been reported. X-ray photoelectron spectroscopy (XPS), UV-visible spectra, and elemental analysis all support a stoichiometric 1 : 1 TSPP to TPyP composition. Atomic force microscopy (AFM) revealed that the porphyrin nanostructure is composed of stacked ribbons about 20 nm tall, 70 nm wide, and several microns in length. High resolution transmission electron microscopy (HRTEM) images showed clear lattice fringes 1.5 ± 0.2 nm in width aligned along the length of the nanorod. Selected area electron diffraction (SAED) and powder X-ray diffraction patterns of TSPP:TPyP are consistent with an orthorhombic system and space group Imm2 with lattice parameters a = 26.71 Å, b = 20.16 Å, and c = 8.61 Å. Crystallographic data is consistent with an arrangement of alternating face-to-face TSPP and TPyP molecules forming ordered columns along the length of the nanorods. The structural integrity of the solid is attributed to combined noncovalent interactions that include ionic, hydrogen bonding, and π-π interactions. The values of Young's modulus obtained for the crystalline TSPP:TPyP nanorods averaged 6.5 ± 1.3 GPa. This modulus is comparable to those reported for covalently bonded flexible polymeric systems. The robust bonding character of the TSPP:TPyP nanostructures combined with their mechanical properties makes them excellent candidates for flexible optoelectronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites

Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...

متن کامل

Stiffness Enhancement in Nacre-Inspired Nanocomposites due to Nanoconfinement

Layered assemblies of polymers and graphene derivatives employ nacre's tested strategy of intercalating soft organic layers with hard crystalline domains. These layered systems commonly display elastic properties that exceed simple mixture rule predictions, but the molecular origins of this phenomenon are not well understood. Here we address this issue by quantifying the elastic behavior of nan...

متن کامل

Temperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments

Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...

متن کامل

Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study

Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...

متن کامل

The Prediction of Thermo Physical, Vibrational Spectroscopy, Chemical Reactivity, Biological Properties of Morpholinium Borate, Phosphate, Chloride and Bromide Ionic Liquid: A DFT Study

In the light of computational chemistry, based on morpholinium cation-based Ionic Liquid, their different types of physical, chemical, and biological properties is highlighted. The physical properties are evaluated through the Density Functional Theory (DFT) of Molecular Mechanics and also examine the chemical and biological properties. The difference between Highest Occupied Molecular Orbital ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2014