A redundant Klee-Minty construction with all the redundant constraints touching the feasible region

نویسندگان

  • Eissa Nematollahi
  • Tamás Terlaky
چکیده

By introducing some redundant Klee-Minty constructions, we have previously shown that the central path may visit every vertex of the Klee-Minty cube having 2 − 2 “sharp” turns in dimension n. In all of the previous constructions, the maximum of the distances of the redundant constraints to the corresponding facets is an exponential number of the dimension n, and those distances are decaying geometrically. In this paper, we provide a new construction in which all of the distances are set to zero, i.e., all of the redundant constraints touch the feasible region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Optimization Laboratory Title: A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region

By introducing some redundant Klee-Minty constructions, we have previously shown that the central path may visit every vertex of the Klee-Minty cube having 2 − 2 “sharp” turns in dimension n. In all of the previous constructions, the maximum of the distances of the redundant constraints to the corresponding facets is an exponential number of the dimension n, and those distances are decaying geo...

متن کامل

A simpler and tighter redundant Klee-Minty construction

By introducing redundant Klee-Minty examples, we have previously shown that the central path can be bent along the edges of the Klee-Minty cubes, thus having 2n − 2 sharp turns in dimension n. In those constructions the redundant hyperplanes were placed parallel with the facets active at the optimal solution. In this paper we present a simpler and more powerful construction, where the redundant...

متن کامل

Central Path Curvature and Iteration-Complexity for Redundant Klee—Minty Cubes

We consider a family of linear optimization problems over the n-dimensional Klee—Minty cube and show that the central path may visit all of its vertices in the same order as simplex methods do. This is achieved by carefully adding an exponential number of redundant constraints that forces the central path to take at least 2 − 2 sharp turns. This fact suggests that any feasible path-following in...

متن کامل

Volumetric Path and Klee-Minty Constructions

By introducing redundant Klee-Minty examples, we have previously shown that the central path can be bent along the simplex path. In this paper, we seek for an analogous result for the volumetric path defined by the volumetric barrier function. Although we only have a complete proof in 2D, the evidence provided by some illustrations anticipates that a KleeMinty construction exists for the volume...

متن کامل

A tight iteration-complexity upper bound for the MTY predictor-corrector algorithm via redundant Klee-Minty cubes

It is an open question whether there is an interior-point algorithm for linear optimization problems with a lower iteration-complexity than the classical bound O( √ n log(1 μ0 )). This paper provides a negative answer to that question for a variant of the Mizuno-Todd-Ye predictor-corrector algorithm. In fact, we prove that for any > 0, there is a redundant Klee-Minty cube for which the aforemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008