Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo
نویسندگان
چکیده
Application of regulatory T cells (Tregs) in transplantation, autoimmunity and allergy has been extensively explored, but how Foxp3 and Treg stability is regulated in vivo is incompletely understood. Here, we identify a requirement for Deltex1 (DTX1), a contributor to T-cell anergy and Foxp3 protein level maintenance in vivo. Dtx1(-/-) Tregs are as effective as WT Tregs in the inhibition of CD4(+)CD25(-) T-cell activation in vitro. However, the suppressive ability of Dtx1(-/-) Tregs is greatly impaired in vivo. We find that Foxp3 expression is diminished when Dtx1(-/-) Tregs are co-transferred with effector T cells in vivo. DTX1 promotes the degradation of HIF-1α. Knockout of HIF-1α restores the Foxp3 stability and rescues the defective suppressive activity in Dtx1(-/-) Treg cells in vivo. Our results suggest that DTX1 exerts another level of control on Treg stability in vivo by sustaining the expression of Foxp3 protein in Tregs.
منابع مشابه
Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملEffect of 8-week resistance training on HIF-1α gene expression and Endothelial Progenitor Cells recall of blood after one session of resistance activity in elderly men
Abstract Background and Objectives Dysfunction of endothelial cells is associated with the development of atherosclerosis and cardiovascular disease. Adult endothelial progenitor cells are derived from hematopoietic stem cells capable of forming new blood vessels through a process of angiogenesis. This study was to investigate the effect of resistance training on HIF-1α gene expression and rec...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملSuppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro
The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-1α (HIF-1α). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stabilit...
متن کاملThe effects of 8 weeks aerobic training on HIF-1α, miR-21 and VEGF gene expression in female Balb/c with breast cancer
Background: Breast cancer, which is a major cancer for women, affects the angiogenesis process. Exercise training can decrease the process of angiogenesis in tumor tissue. The aim of present study was to investigate the effects of 8 weeks of aerobic training on HIF-1α, miR-21 and VEGF gene expression in female Balb/c mice with breast cancer. Materials and Methods: 16 female Balb/c mice (age: 3...
متن کامل