Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans.

نویسندگان

  • Julie K Hicks
  • Cletus A D'Souza
  • Gary M Cox
  • Joseph Heitman
چکیده

Our earlier findings established that cyclic AMP-dependent protein kinase functions in a signaling cascade that regulates mating and virulence of Cryptococcus neoformans var. grubii (serotype A). Mutants lacking the serotype A protein kinase A (PKA) catalytic subunit Pka1 are unable to mate, fail to produce melanin or capsule, and are avirulent in animal models, whereas mutants lacking the PKA regulatory subunit Pkr1 overproduce capsule and are hypervirulent. Because other mutations have been observed to confer different phenotypes in two diverged varieties of C. neoformans (grubii variety [serotype A] and neoformans variety [serotype D]), we analyzed the functions of the PKA genes in the serotype D neoformans variety. Surprisingly, the Pka1 catalytic subunit was not required for mating, haploid fruiting, or melanin or capsule production of serotype D strains. Here we identify a second PKA catalytic subunit gene, PKA2, that is present in both serotype A and D strains of C. neoformans. The divergent Pka2 catalytic subunit was found to regulate mating, haploid fruiting, and virulence factor production in serotype D strains. In contrast, Pka2 has no role in mating, melanin production, or capsule formation in serotype A strains. Our studies illustrate how different components of signaling pathways can be co-opted and functionally specialized during the evolution of related but distinct varieties or subspecies of a human fungal pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergence of protein kinase A catalytic subunits in Cryptococcus neoformans and Cryptococcus gattii illustrates evolutionary reconfiguration of a signaling cascade.

Gene duplication and divergence via both the loss and gain of gene activities are powerful evolutionary forces underlying the origin of new biological functions. Here a comparative genetics approach was applied to examine the roles of protein kinase A (PKA) catalytic subunits in three closely related varieties or sibling species of the pathogenic fungus genus Cryptococcus. Previous studies reve...

متن کامل

Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade.

The evolutionarily conserved cyclic AMP (cAMP) signaling pathway controls cell functions in response to environmental cues in organisms as diverse as yeast and mammals. In the basidiomycetous human pathogenic fungus Cryptococcus neoformans, the cAMP pathway governs virulence and morphological differentiation. Here we identified and characterized adenylyl cyclase-associated protein, Aca1, which ...

متن کامل

Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans.

Iron acquisition is a critical aspect of the virulence of many pathogenic microbes, and iron limitation is an important defense mechanism for mammalian hosts. We are examining mechanisms of iron regulation and acquisition in the fungal pathogen Cryptococcus neoformans, and here, we characterize the roles of the ferroxidases Cfo1 and Cfo2. Cfo1 is required for the reductive iron uptake system th...

متن کامل

Signal transduction cascades regulating fungal development and virulence.

Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2004