Probabilistic Interpretation of a System of Quasilinear Parabolic Pdes

نویسنده

  • E. PARDOUX
چکیده

Using a forward– backward stochastic differential equations (FBSDE) associated to a transmutation process driven by a finite sequence of Poisson processes, we obtain a probabilistic interpretation for a non-degenerate system of quasilinear parabolic partial differential equations (PDEs). The novetly is that the linear second order differential operator is different on each line of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auxiliary Sdes for Homogenization of Quasilinear Pdes with Periodic Coefficients

We study the homogenization property of systems of quasi-linear PDEs of parabolic type with periodic coefficients, highly oscillating drift and highly oscillating nonlinear term. To this end, we propose a probabilistic approach based on the theory of forward–backward stochastic differential equations and introduce the new concept of " auxiliary SDEs. " 1. Introduction and assumptions.

متن کامل

Backward doubly stochastic differential equations and systems of quasilinear SPDEs

A new kind of backward stochastic differential equations (in short BSDE), where the solution is a pair of processes adapted to the past of the driving Brownian motion, has been introduced by the authors in [63. It was then shown in a series of papers by the second and both authors (see [8, 7, 9, 103), that this kind of backward SDEs gives a probabilistic representation for the solution of a lar...

متن کامل

Maximum principle for quasilinear stochastic PDEs with obstacle

We prove a maximum principle for local solutions of quasilinear stochastic PDEs with obstacle (in short OSPDE). The proofs are based on a version of Itô’s formula and estimates for the positive part of a local solution which is non-positive on the lateral boundary. Our method is based on a version of Moser’s iteration scheme developed first by Aronson and Serrin [2] in the context of non-linear...

متن کامل

Stochastic homogenization of quasilinear PDEs with a spatial degeneracy

We investigate stochastic homogenization for some degenerate quasilinear parabolic PDEs. The underlying nonlinear operator degenerates along the space variable, uniformly in the nonlinear term: the degeneracy points correspond to the degeneracy points of a reference diffusion operator on the random medium. Assuming that this reference diffusion operator is ergodic, we can prove the homogenizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004