Short-Term Depression of Axonal Spikes at the Mouse Hippocampal Mossy Fibers and Sodium Channel-Dependent Modulation

نویسندگان

  • Shunsuke Ohura
  • Haruyuki Kamiya
چکیده

Axonal spike is an important upstream process of transmitter release, which directly impacts on release probability from the presynaptic terminals. Despite the functional significance, possible activity-dependent modulation of axonal spikes has not been studied extensively, partly due to inaccessibility of the small structures of axons for electrophysiological recordings. In this study, we tested the possibility of use-dependent changes in axonal spikes at the hippocampal mossy fibers, where direct recordings from the axon terminals are readily feasible. Hippocampal slices were made from mice of either sex, and loose-patch clamp recordings were obtained from the visually identified giant mossy fiber boutons located in the stratum lucidum of the CA3 region. Stimulation of the granule cell layer of the dentate gyrus elicited axonal spikes at the single bouton which occurred in all or none fashion. Unexpected from the digital nature of spike signaling, the peak amplitude of the second spikes in response to paired stimuli at a 50-ms interval was slightly but reproducibly smaller than the first spikes. Repetitive stimuli at 20 or 100 Hz also caused progressive use-dependent depression during the train. Notably, veratridine, an inhibitor of inactivation of sodium channels, significantly accelerated the depression with minimal effect on the initial spikes. These results suggest that sodium channels contribute to use-dependent depression of axonal spikes at the hippocampal mossy fibers, possibly by shaping the afterdepolarization (ADP) following axonal spikes. Prolonged depolarization during ADP may inactivate a fraction of sodium channels and thereby suppresses the subsequent spikes at the hippocampal mossy fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High threshold, proximal initiation, and slow conduction velocity of action potentials in dentate granule neuron mossy fibers.

Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the mammalian CNS, the hippocampal mossy fibers. These neurons are also key regulators of physiological and pathophysiological information flow through the hippocampus. We took a comparative approach to studying mossy fiber action potential initiation and propagation in hippocampal slices from juvenile rats. Dentat...

متن کامل

Fast sodium channel gating supports localized and efficient axonal action potential initiation.

Action potentials (APs) are initiated in the proximal axon of most neurons. In myelinated axons, a 50-times higher sodium channel density in the initial segment compared to the soma may account for this phenomenon. However, little is known about sodium channel density and gating in proximal unmyelinated axons. To study the mechanisms underlying AP initiation in unmyelinated hippocampal mossy fi...

متن کامل

GABAergic interneurons facilitate mossy fiber excitability in the developing hippocampus.

Profound activity-dependent synaptic facilitation at hippocampal mossy fiber synapses is a unique and functionally important property. Although presynaptic ionotropic receptors, such as kainate receptors, contribute partially to the facilitation in the hippocampus, the precise mechanisms of presynaptic regulation by endogenous neurotransmitters remain unclear. In this study, we report that axon...

متن کامل

The Hippocampal Mossy Fiber Synapse: Transmission, Modulation and Plasticity

Chemical synapses are key elements for the communication between nerve cells. This communication can be regulated on various time scales and through different mechanisms affecting synaptic transmission. Amongst these are slow and long-lasting adjustments by endogenous neuromodulators, instantaneous and reversible activitydependent regulation by short-term plasticity and persistent activity-depe...

متن کامل

GABAA Receptors at Hippocampal Mossy Fibers

Presynaptic GABAA receptors modulate synaptic transmission in several areas of the CNS but are not known to have this action in the cerebral cortex. We report that GABAA receptor activation reduces hippocampal mossy fibers excitability but has the opposite effect when intracellular Cl- is experimentally elevated. Synaptically released GABA mimics the effect of exogenous agonists. GABAA receptor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018