On a Generalized Hyers-Ulam Stability of Trigonometric Functional Equations

نویسندگان

  • Jaeyoung Chung
  • Jeongwook Chang
چکیده

The Hyers-Ulam stability problems of functional equations go back to 1940 when S. M. Ulam proposed a question concerning the approximate homomorphisms from a group to a metric group see 1 . A partial answer was given by Hyers et al. 2, 3 under the assumption that the target space of the involved mappings is a Banach space. After the result of Hyers, Aoki 4 , and Bourgin 5, 6 dealt with this problem, however, there were no other results on this problem until 1978 when Rassias 7 dealt again with the inequality of Aoki 4 . Following the Rassias’ result, a great number of papers on the subject have been published concerning numerous functional equations in various directions 2, 7–21 . The following four functional equations are called trigonometric functional equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam stability of a generalized trigonometric-quadratic functional equation

The Hyers-Ulam stability of the generalized trigonometric-quadratic functional equation ( ) ( ) ( ) ( ) ( ) ( ) 2 F x y G x y H x K y L x M y + − − = + + over the domain of an abelian group and the range of the complex field is established based on the assumption of the unboundedness of the function K. Subject to certain natural conditions, explicit shapes of the functions H and K are determine...

متن کامل

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

Stability of generalized Newton difference equations

In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations ∆n(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional...

متن کامل

The Generalized Hyers –ulam –rassias Stability of Quadratic Functional Equations with Two Variables

In this paper,we consider functional equations involving a two variables examine some of these equations in greater detail and we study applications of cauchy’s equation.using the generalized hyers-ulam-rassias stability of quaradic functional equations finding the solution of two variables(quaradic functional equations) 1.INTRODUCTION We achieve the general solution and the generalized Hyers-U...

متن کامل

HYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS ON FUZZY NORMED LINER SPACES

In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012