A note on the Gauss-Jacobi quadrature formulae for singular integral equations of the second kind
نویسندگان
چکیده
A fast and efficient numerical method based on the Gauss-Jacobi quadrature is described that is suitable for solving Fredholm singular integral equations of the second kind that are frequently encountered in fracture and contact mechanics. Here we concentrate on the case when the unknown function is singular at both ends of the interval. Quadrature formulae involve fixed nodal points and provide exact results for polynomials of degree 2n − 1, where n is the number of nodes. Finally, an application of the method to a plane problem involving complete contact is presented.
منابع مشابه
Gauss-chebyshev Quadrature Formulae for Strongly Singular Integrals
This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...
متن کاملAn efficient numerical method for the solution of sliding contact problems
In this paper, an efficient numerical method to solve sliding contact problems is proposed. Explicit formulae for the Gauss–Jacobi numerical integration scheme appropriate for the singular integral equations of the second kind with Cauchy kernels are derived. The resulting quadrature formulae for the integrals are valid at nodal points determined from the zeroes of a Jacobi polynomial. Gaussian...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملOn the solution of integral equations of the first kind with singular kernels of Cauchy-type
Abstract Two efficient quadrature formulae have been developed for evaluating numerically certain singular integral equations of the first kind over the finite interval [-1,1]. Central to this work is the application of four special cases of the Jacobi polynomials P n (x), whose zeros served as interpolation and collocation nodes: (i) α = β = −2 , Tn(x), the first kind Chebyshev polynomials (ii...
متن کامل