A Graph Embedding Method Using the Jensen-Shannon Divergence
نویسندگان
چکیده
Riesen and Bunke recently proposed a novel dissimilarity based approach for embedding graphs into a vector space. One drawback of their approach is the computational cost graph edit operations required to compute the dissimilarity for graphs. In this paper we explore whether the Jensen-Shannon divergence can be used as a means of computing a fast similarity measure between a pair of graphs. We commence by computing the Shannon entropy of a graph associated with a steady state random walk. We establish a family of prototype graphs by using an information theoretic approach to construct generative graph prototypes. With the required graph entropies and a family of prototype graphs to hand, the Jensen-Shannon divergence between a sample graph and a prototype graph can be computed. It is defined as the Jensen-Shannon between the pair of separate graphs and a composite structure formed by the pair of graphs. The required entropies of the graphs can be efficiently computed, the proposed graph embedding using the Jensen-Shannon divergence avoids the burdensome graph edit operation. We explore our approach on several graph datasets abstracted from computer vision and bioinformatics databases.
منابع مشابه
Graph Characteristics from the Quantum Jensen-Shannon Graph Kernel
In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density o...
متن کاملA quantum Jensen-Shannon graph kernel for unattributed graphs
In this paper, we use the quantum Jensen–Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen–Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated wit...
متن کاملA Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks
In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. ...
متن کاملCharacterizing graph symmetries through quantum Jensen-Shannon divergence.
In this paper we investigate the connection between quantum walks and graph symmetries. We begin by designing an experiment that allows us to analyze the behavior of the quantum walks on the graph without causing the wave function collapse. To achieve this, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the quantum Jensen-Shannon d...
متن کاملProperties of Classical and Quantum Jensen-Shannon Divergence
Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JDα for α > 0), the Jensen divergences of order α, which generalize JD as JD1 = J...
متن کامل