Fuzzy Data Mining for Discovering Changes in Association Rules over Time
نویسندگان
چکیده
Association rule mining is an important topic in data mining research. Many algorithms have been developed for such task and they typically assume that the underlying associations hidden in the data are stable over time. However, in real world domains, it is possible that the data characteristics and hence the associations change significantly over time. Existing data mining algorithms have not taken the changes in associations into consideration and this can result in severe degradation of performance, especially when the discovered association rules are used for classification (prediction). Although the mining of changes in associations is an important problem because it is common that we need to predict the future based on the historical data in the past, existing data mining algorithms are not developed for this task. In this paper, we introduce a new fuzzy data mining technique to discover changes in association rules over time. Our approach mines fuzzy rules to represent the changes in association rules. Based on the discovered fuzzy rules, our approach is able to predict how the association rules will change in the future. The experimental results on a real-life database have shown that our approach is very effective in mining and predicting changes in association rules over time.
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملMining changes in association rules: a fuzzy approach
Association rule mining is concerned with the discovery of interesting association relationships hidden in databases. Existing algorithms typically assume that data characteristics are stable over time. Their main focus is therefore to mine association rules in an efficient manner. However, the world constantly changes. This makes the characteristics of real-life entities represented by the dat...
متن کاملA Conceptual Approach to Temporal Weighted Itemset Utility Mining
Conventional Frequent pattern mining discovers patterns in transaction databases based only on the relative frequency of occurrence of items without considering their utility. Until recently, rarity has not received much attention in the context of data mining. For many real world applications, however, utility of itemsets based on cost, profit or revenue is of importance. Most Association Rule...
متن کاملMining fuzzy periodic association rules
We develop techniques for discovering patterns with periodicity in this work. Patterns with periodicity are those that occur at regular time intervals, and therefore there are two aspects to the problem: finding the pattern, and determining the periodicity. The difficulty of the task lies in the problem of discovering these regular time intervals, i.e., the periodicity. Periodicities in the dat...
متن کاملMining Changes and Connections using Rough Set Theory
Mining data changes and connections from information systems (or databases) is made difficult by the different data behaviors and relationships across multiple data sets. When making a decision, such a dynamic and integrated knowledge base can be used to set useful rules (e.g., causality) that differ from the statistical associations in a single resource. In this paper, using techniques based o...
متن کامل