Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate.

نویسندگان

  • J-C Platel
  • S Boisseau
  • A Dupuis
  • J Brocard
  • A Poupard
  • M Savasta
  • M Villaz
  • M Albrieux
چکیده

Before synaptogenesis, early excitability implicating voltage-dependent and transmitter-activated channels is known to be crucial for neuronal development. We previously showed that preplate (PP) neurons of the mouse neocortex express functional Na(+) channels as early as embryonic day 12. In this study, we investigated the role of these Na(+) channels in signaling during early development. In the neocortex of embryonic-day-13 mice, activation of Na(+) channels with veratridine induced a large Ca(2+) response throughout the neocortex, even in cell populations that lack the Na(+) channel. This Na(+)-dependent Ca(2+) activity requires external Ca(2+) and is completely blocked by inhibitors of Na(+)/Ca(2+) exchangers. Moreover, veratridine-induced Ca(2+) increase coincides with a burst of exocytosis in the PP. In parallel, we show that Na(+) channel stimulation enhances glutamate secretion in the neocortical wall. Released glutamate triggers further Ca(2+) response in PP and ventricular zone, as indicated by the decreased response to veratridine in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NMDA-receptor inhibitors. Therefore, the combined activation of the Na(+) channel and the Na(+)/Ca(2+) exchanger triggers Ca(2+) signaling in the PP neurons, leading to glutamate secretion, which amplifies the signal and serves as an autocrine/paracrine transmitter before functional synapses are formed in the neocortex. Membrane depolarization induced by glycine receptors activation could be one physiological activator of this Na(+) channel-dependent pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney.

The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa ...

متن کامل

Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons.

Ca2+-activated K+ currents and their Ca2+ sources through high-threshold voltage-activated Ca2+ channels were studied using whole-cell patch-clamp recordings from freshly dissociated mouse neocortical pyramidal neurons. In the presence of 4-aminopyridine, depolarizing pulses evoked transient outward currents and several components of sustained currents in a subgroup of cells. The fast transient...

متن کامل

O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation

Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...

متن کامل

Thapsigargin-sensitive cationic current leads to membrane depolarization, calcium entry, and insulin secretion in rat pancreatic beta-cells.

Glucose-induced insulin secretion by pancreatic beta-cells depends on membrane depolarization and [Ca2+]i increase. We correlated voltage- and current-clamp recordings, [Ca2+]i measurements, and insulin reverse hemolytic plaque assay to analyze the activity of a thapsigargin-sensitive cationic channel that can be important for membrane depolarization in single rat pancreatic beta-cells. We demo...

متن کامل

Measurement of intracellular free zinc in living cortical neurons: routes of entry.

We used the ratioable fluorescent dye mag-fura-5 to measure intracellular free Zn2+ ([Zn2+]i) in cultured neocortical neurons exposed to neurotoxic concentrations of Zn2+ in concert with depolarization or glutamate receptor activation and identified four routes of Zn2+ entry. Neurons exposed to extracellular Zn2+ plus high K+ responded with a peak cell body signal corresponding to a [Zn2+]i of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 52  شماره 

صفحات  -

تاریخ انتشار 2005