Fuzzy PI control design for an industrial weigh belt feeder
نویسندگان
چکیده
An industrial weigh belt feeder is used to transport solid materials into a manufacturing process at a constant feedrate. It exhibits nonlinear behavior because of motor friction, saturation, and quantization noise in the sensors, which makes standard autotuning methods difficult to implement. This paper proposes and experimentally demonstrates two types of fuzzy logic controllers for an industrial weigh belt feeder. The first type is a PI-like fuzzy logic controller (FLC). A gain scheduled PI-like FLC and a self-tuning PI-like FLC are presented. For the gain scheduled PI-like FLC the output scaling factor of the controller is gain scheduled with the change of setpoint. For the selftuning PI-like FLC, the output scaling factor of the controller is modified on-line by an updating factor whose value is determined by a rule-base with the error and change of error of the controlled variable as the inputs. A fuzzy PI controller is also presented, where the proportional and integral gains are tuned on-line based on fuzzy inference rules. Experimental results show the effectiveness of the proposed fuzzy logic controllers. A performance comparison of the three controllers is also given.
منابع مشابه
Comparison of two approaches to automated PI controller tuning for an industrial weigh belt feeder.
In this paper, two advanced PI controller tuning methods, unfalsified control and fuzzy control, are applied to an industrial weigh belt feeder that has significant nonlinearities. Both methods do not require an explicit plant model. The advantage of the unfalsified PI control design method is that it is able to directly incorporate multiple performance criteria, while the advantage of fuzzy lo...
متن کاملAnfis Based Material Flow Rate Control System for Weigh Feeder Conveyor
Weight control system on the feeder conveyor determines the factor of the quality of products within an industry. The dynamics of the flow rate of material through the feeder conveyor weigh requires a good level of performance controllers. The base of current controllers such as FLC (Fuzzy Logic Controller) requires a certain amount of knowledge and expertise in its design that will make it dif...
متن کاملDesign of a Weigh Feeder Control System for Reduced Energy Consumption
In the present paper, we discuss a design method for controlling a weigh feeder that has been widely used in industry. Since a control system is designed using a performanceadaptive method, the control parameters are adaptively updated based on user-specified control performance. In conventional performance-adaptive methods, control systems are designed such that the variance of the control err...
متن کاملDesign of Fuzzy Logic Based PI Controller for DFIG-based Wind Farm Aimed at Automatic Generation Control in an Interconnected Two Area Power System
This paper addresses the design procedure of a fuzzy logic-based adaptive approach for DFIGs to enhance automatic generation control (AGC) capabilities and provide better dynamic responses in multi-area power systems. In doing so, a proportional-integral (PI) controller is employed in DFIG structure to control the governor speed of wind turbine. At the first stage, the adjustable parameters of ...
متن کاملSpeed Control of Permanent Magnet Synchronous Motor by Antiwindup PI Controller and Comparison with Fuzzy Controller
In this paper, the driver with antiwindup and fuzzy high-performance and robust PI controller has been suggested for Permanent Magnet Synchronous Motor (PMSM). This controller is suggested for the design of the robust driver for three phase PMSM and the cost reduction of its control system. It’s useful for the industrial application and automation and ultimately speed control and the improvemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 11 شماره
صفحات -
تاریخ انتشار 2003