A mixed-binomial model for Likert-type personality measures
نویسنده
چکیده
Personality measurement is based on the idea that values on an unobservable latent variable determine the distribution of answers on a manifest response scale. Typically, it is assumed in the Item Response Theory (IRT) that latent variables are related to the observed responses through continuous normal or logistic functions, determining the probability with which one of the ordered response alternatives on a Likert-scale item is chosen. Based on an analysis of 1731 self- and other-rated responses on the 240 NEO PI-3 questionnaire items, it was proposed that a viable alternative is a finite number of latent events which are related to manifest responses through a binomial function which has only one parameter-the probability with which a given statement is approved. For the majority of items, the best fit was obtained with a mixed-binomial distribution, which assumes two different subpopulations who endorse items with two different probabilities. It was shown that the fit of the binomial IRT model can be improved by assuming that about 10% of random noise is contained in the answers and by taking into account response biases toward one of the response categories. It was concluded that the binomial response model for the measurement of personality traits may be a workable alternative to the more habitual normal and logistic IRT models.
منابع مشابه
Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملIntegration of the Forced-Choice Questionnaire and the Likert Scale: A Simulation Study
The Thurstonian item response theory (IRT) model allows estimating the latent trait scores of respondents directly through their responses in forced-choice questionnaires. It solves a part of problems brought by the traditional scoring methods of this kind of questionnaires. However, the forced-choice designs may still have their own limitations: The model may encounter underidentification and ...
متن کاملZero-inflated negative binomial modeling, efficiency for analysis of length of maternity hospitalization
Background: Mothers’ delivery is one of the most common hospitalization factors throughout the world and it’s modeling can explain distribution and effective factors on rising and decreasing of it. The objective of the present study was a suitable modeling for mother hospitalization time and comparing it with different models. Materials & Methods: Present study is an observational and cross-s...
متن کاملExamples of mixed-effects modeling 1 Running head: EXAMPLES OF MIXED-EFFECTS MODELING Examples of mixed-effects modeling with crossed random effects and with binomial data
Psycholinguistic data are often analyzed with repeated-measures analyses of variance (ANOVA), but this paper argues that mixed-effects (multilevel) models provide a better alternative method. First, models are discussed in which the two random factors of participants and items are crossed, and not nested. Traditional ANOVAs are compared against these crossed mixed-effects models, for simulated ...
متن کاملExamples of mixed-effects modeling with crossed random effects and with binomial data
Psycholinguistic data are often analyzed with repeated-measures analyses of variance (ANOVA), but this paper argues that mixed-effects (multilevel) models provide a better alternative method. First, models are discussed in which the two random factors of participants and items are crossed, and not nested. Traditional ANOVAs are compared against these crossed mixed-effects models, for simulated ...
متن کامل