MATHEMATICAL ENGINEERING TECHNICAL REPORTS On the Interpretation of I-Divergence-Based Distribution-Fitting as a Maximum-Likelihood Estimation Problem

نویسندگان

  • Jonathan LE ROUX
  • Hirokazu KAMEOKA
  • Nobutaka ONO
  • Shigeki SAGAYAMA
  • Akimichi TAKEMURA
چکیده

We investigate the mis-match in the classical interpretation of certain distribution-fitting problems as maximum-likelihood (ML) estimation problems in the particular case of the I-divergence. The general relation between Bregman divergences and exponential families shown by Banerjee et al. [8] enables to consider distribution-fitting problems based on Bregman divergences as ML problems based on the corresponding exponential family. This interpretation is however only valid if the data is included in the support of the exponential family. This is the case for the I-divergence, which is associated to the Poisson distribution, when applied to real-valued data. We explain more precisely the reason for this mis-match, and derive an asymptotically justifiable alternative to the usual workaround consisting in quantizing the data, by using the Gamma function as a normalization term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM

Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...

متن کامل

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

Asymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution

Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Estimation of Exponential-Polynomial Distribution by Holonomic Gradient Descent

We study holonomic gradient decent for maximum likelihood estimation of exponentialpolynomial distribution, whose density is the exponential function of a polynomial in the random variable. We first consider the case that the support of the distribution is the set of positive reals. We show that the maximum likelihood estimate (MLE) can be easily computed by the holonomic gradient descent, even...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008