Development of a new meta-score for protein structure prediction from seven all-atom distance dependent potentials using support vector regression.
نویسندگان
چکیده
An accurate scoring function is required for protein structure prediction. The scoring function should distinguish the native structure among model structures (decoys) and it also should have correlation with the quality of the decoys. However, we had observed the trade-off between the two requirements for seven all-atom distance dependent potentials in the previous study, where the native structure could be discriminated by examining the fine atomic details, whereas the correlation could be improved by examining coarse-grained interactions, To overcome this problem, in this study, we tried to make an improved scoring function by combining the seven potentials. First, the seven potentials were normalized by the expected energy values of the native and reference states of the target protein. Second, the relationship between the seven normalized energies and the quality (GDT_TS) of the structure were learned using support vector regression with the decoy sets of CASP6 as the training set. Then the meta-score was obtained as the predicted GDT_TS and it was tested with the decoys of the CASP7 experiment. The meta-score showed improvement in correlations with the GDT_TS and in the Z-score of the native structure. It also showed comparable performances in the GDT and enrichment criteria, with the best component potentials. The meta-score could be also used as the absolute quality of the structures. Our study suggests the benefit of combining several different scoring functions for model evaluation.
منابع مشابه
Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction.
The distance-dependent structure-derived potentials developed so far all employed a reference state that can be characterized as a residue (atom)-averaged state. Here, we establish a new reference state called the distance-scaled, finite ideal-gas reference (DFIRE) state. The reference state is used to construct a residue-specific all-atom potential of mean force from a database of 1011 nonhomo...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملThe Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression
Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...
متن کاملSupport vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome informatics. International Conference on Genome Informatics
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2009