Uncertainty Quantification in Dynamic Simulations of Large-scale Power System Models Using the High-order Probabilistic Collocation Method on Sparse Grids
نویسندگان
چکیده
This paper employs a probabilistic collocation method (PCM) to quantify the uncertainties in dynamic simulations of power systems. The approach was tested on a single machine infinite bus system and the over 15,000 -bus Western Electricity Coordinating Council (WECC) system in western North America. Compared to the classic Monte Carlo (MC) method, the PCM applies the Smolyak algorithm to reduce the number of simulations that have to be performed. Therefore, the computational cost can be greatly reduced using PCM. A comparison was made with the MC method on a single machine as well as the WECC system. The simulation results show that by using PCM only a small number of sparse grid points need to be sampled even when dealing with systems with a relatively large number of uncertain parameters.
منابع مشابه
Numerical Comparison of Leja and Clenshaw-Curtis Dimension-Adaptive Collocation for Stochastic Parametric Electromagnetic Field Problems
We consider the problem of approximating the output of a parametric electromagnetic field model in the presence of a large number of uncertain input parameters. Given a sufficiently smooth output with respect to the input parameters, such problems are often tackled with interpolation-based approaches, such as the stochastic collocation method on tensor-product or isotropic sparse grids. Due to ...
متن کاملHigh Dimensional Uncertainty Quantification for an Electrothermal Field Problem using Stochastic Collocation on Sparse Grids and Tensor Train Decomposition
The temperature developed in bondwires of integrated circuits (ICs) is a possible source of malfunction, and has to be taken into account during the design phase of an IC. Due to manufacturing tolerances, a bondwire’s geometrical characteristics are uncertain parameters, and as such their impact has to be examined with the use of uncertainty quantification (UQ) methods. Sampling methods, like t...
متن کاملUncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids
Article history: Received 27 October 2009 Received in revised form 12 April 2010 Accepted 25 May 2010 Available online 2 June 2010
متن کاملComparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sa...
متن کاملEvaluation of uncertainty in dynamic, reduced-order power system models
With the advent of high-speed computation and the desire to analyze increasingly complex behavior in power systems, simulation techniques are gaining importance and prevalence. However, while simulations of large, interconnected power systems are feasible, they remain time-consuming. Additionally, the models and parameters used in simulations are uncertain, due to measurement uncertainty, the n...
متن کامل