On Z2k-Dual Binary Codes

نویسنده

  • Denis S. Krotov
چکیده

A new generalization of the Gray map is introduced. The new generalization Φ : Z 2 → Z k−1 n 2 is connected with the known generalized Gray map φ in the following way: if we take two dual linear Z2k -codes and construct binary codes from them using the generalizations φ and Φ of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity. The classes of Z2k -linear Hadamard codes and co-Z2k-linear extended 1-perfect codes are described, where co-Z2k-linearity means that the code can be obtained from a linear Z2k -code with the help of the new generalized Gray map. Index Terms Gray map, Hadamard codes, MacWilliams identity, perfect codes, Z2k -linearity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimum Distance of Some Families of Z2k-Linear Codes

With the help of a computer, we obtain the minimum distance of some codes belonging to two families of Z2k -linear codes: the first is the generalized Kerdock codes which aren’t as good as the best linear codes and the second is the Hensel lift of quadratic residue codes. In the latter, we found new codes with same minimum distances as the best linear codes of same length and same cardinality. ...

متن کامل

On Gilbert-Varshamov type bounds for Z2k linear codes

In this paper we derive a Gilbert-Varshamov type bound for linear codes over Galois rings GR(pl; j): However, this bound does not guarantee existence of better linear codes over GR(pl; j) than the usual Gilbert-Varshamov bound for linear codes over the residue class field GR(pj): Next we derive a Gilbert-Varshamov type bound for Z4 linear codes which guarantees the existence of Z4 linear codes ...

متن کامل

Isodual Codes over <Subscript>2<Emphasis Type="Italic">k</Emphasis></Subscript> and Isodual Lattices

A code is called isodual if it is equivalent to its dual code, and a lattice is called isodual if it is isometric to its dual lattice. In this note, we investigate isodual codes over Z2k . These codes give rise to isodual lattices; in particular, we construct a 22-dimensional isodual lattice with minimum norm 3 and kissing number 2464.

متن کامل

An upper bound on the minimum weight of Type II Z2k-codes

In this paper, we give a new upper bound on the minimum Euclidean weight of Type II Z2k-codes and the concept of extremality for the Euclidean weights when k = 3, 4, 5, 6. Together with the known result, we demonstrate that there is an extremal Type II Z2k-code of length 8m (m ≤ 8) when k = 3, 4, 5, 6.

متن کامل

Decompositions of the Moonshine Module with respect to subVOAs associated to codes over Z2k

In this paper, we give decompositions of the moonshine module V ♮ with respect to subVOAs associated to extremal Type II codes over Z2k for an integer k ≥ 2. Those subVOAs are isomorphic to the tensor product of 24 copies of the charge conjugation orbifold VOA. Using such decompositions, we obtain some elements of type 4A (k odd) and 2B (k even) of the Monster simple group Aut(V ♮).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007