Ultraviolet absorption spectrum of chlorine peroxide, ClOOCl.

نویسندگان

  • Francis D Pope
  • Jaron C Hansen
  • Kyle D Bayes
  • Randall R Friedl
  • Stanley P Sander
چکیده

The photolysis of chlorine peroxide (ClOOCl) is understood to be a key step in the destruction of polar stratospheric ozone. This study generated and purified ClOOCl in a novel fashion, which resulted in spectra with low impurity levels and high peak absorbances. The ClOOCl was generated by laser photolysis of Cl2 in the presence of ozone, or by photolysis of ozone in the presence of CF2Cl2. The product ClOOCl was collected, along with small amounts of impurities, in a trap at about -125 degrees C. Gas-phase ultraviolet spectra were recorded using a long path cell and spectrograph/diode array detector as the trap was slowly warmed. The spectrum of ClOOCl could be fit with two Gaussian-like expressions, corresponding to two different electronic transitions, having similar energies but different widths. The energies and band strengths of these two transitions compare favorably with previous ab initio calculations. The cross sections of ClOOCl at wavelengths longer than 300 nm are significantly lower than all previous measurements or estimates. These low cross sections in the photolytically active region of the solar spectrum result in a rate of photolysis of ClOOCl in the stratosphere that is much lower than currently recommended. For conditions representative of the polar vortex (solar zenith angle of 86 degrees, 20 km altitude, and O3 and temperature profiles measured in March 2000) calculated photolysis rates are a factor of 6 lower than the current JPL/NASA recommendation. This large discrepancy calls into question the completeness of present atmospheric models of polar ozone depletion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The UV and visible spectra of chlorine peroxide : constraining the atmospheric photolysis rate

The photolysis of chlorine peroxide (ClOOCl) is a key chemical step in the depletion of polar stratospheric ozone. As such, precise measurements of the absorption cross sections for ClOOCl are required. In this paper we provide two critical pieces of laboratory data with which to constrain the rate of ozone depletion. First, we provide an optically pure ClOOCl spectrum in the photolytically imp...

متن کامل

The UV/Vis absorption spectrum of matrix-isolated dichlorine peroxide, ClOOCl.

UV/Vis absorption spectra of ClOOCl isolated in neon matrices were measured in the wavelength range 220-400 nm. The purity of the trapped samples was checked by infrared and UV/Vis matrix spectroscopy as well as low-temperature Raman spectroscopy. At wavelengths below 290 nm, the results agree with the UV spectrum recently published by Pope et al. [J. Phys. Chem. A, 2007, 111, 4322-4332]. Howev...

متن کامل

Constraining the chlorine monoxide (ClO)/chlorine peroxide (ClOOCl) equilibrium constant from Aura Microwave Limb Sounder measurements of nighttime ClO.

The primary ozone loss process in the cold polar lower stratosphere hinges on chlorine monoxide (ClO) and one of its dimers, chlorine peroxide (ClOOCl). Recently, analyses of atmospheric observations have suggested that the equilibrium constant, K(eq), governing the balance between ClOOCl formation and thermal decomposition in darkness is lower than that in the current evaluation of kinetics da...

متن کامل

Does chlorine peroxide absorb below 250 nm?

Low-lying singlet and triplet electronic excited states of ClOOCl are presented. Calculations of the excitation energies and oscillator strengths are reported using excited state coupled cluster response methods, as well as the complete active space self-consistent field method with the full Breit-Pauli spin-orbit operator. These calculations predict that for ClOOCl there should be a weakly abs...

متن کامل

Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements

Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO) microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85 S, 166.75 E). During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl) occurs mainly by photolysis. Some time after sunr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 20  شماره 

صفحات  -

تاریخ انتشار 2007