RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads
نویسندگان
چکیده
MOTIVATION Repetitive DNA makes up large portions of plant and animal nuclear genomes, yet it remains the least-characterized genome component in most species studied so far. Although the recent availability of high-throughput sequencing data provides necessary resources for in-depth investigation of genomic repeats, its utility is hampered by the lack of specialized bioinformatics tools and appropriate computational resources that would enable large-scale repeat analysis to be run by biologically oriented researchers. RESULTS Here we present RepeatExplorer, a collection of software tools for characterization of repetitive elements, which is accessible via web interface. A key component of the server is the computational pipeline using a graph-based sequence clustering algorithm to facilitate de novo repeat identification without the need for reference databases of known elements. Because the algorithm uses short sequences randomly sampled from the genome as input, it is ideal for analyzing next-generation sequence reads. Additional tools are provided to aid in classification of identified repeats, investigate phylogenetic relationships of retroelements and perform comparative analysis of repeat composition between multiple species. The server allows to analyze several million sequence reads, which typically results in identification of most high and medium copy repeats in higher plant genomes.
منابع مشابه
High‐throughput sequencing and graph‐based cluster analysis facilitate microsatellite development from a highly complex genome
Despite recent advances in high-throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club-legged grasshopper (G...
متن کاملSingle-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome
UNLABELLED Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contigu...
متن کاملCombination of de novo assembly of massive sequencing reads with classical repeat prediction improves identification of repetitive sequences in Schistosoma mansoni.
The genome of the parasitic platyhelminth Schistosoma mansoni is composed of approximately 40% of repetitive sequences of which roughly 20% correspond to transposable elements. When the genome sequence became available, conventional repeat prediction programs were used to find these repeats, but only a fraction could be identified. To exhaustively characterize the repeats we applied a new massi...
متن کاملdeepTools2: a next generation web server for deep-sequencing data analysis
We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, ...
متن کاملDetection and Characterization of Weissellicin 110, a Bacteriocin Produced by Weissella cibaria
Background: Weissellicin 110 is the only bacteriocin reported in Weissella cibaria up to now. This bacteriocin represents several unique features. This is the first report on the gene sequence that encodes for the bacteriocin. Objectives: Providing a rapid detection method to isolate the weissellicin 110 encoding gene and determination of the bacteriocin distribution were the objectives. Materi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2013