Simple point-ion electrostatic model explains the cation distribution in spinel oxides.
نویسندگان
چکیده
The A2BO4 spinel oxides are distinguished by having either a normal (N) or an inverse (I) distribution of the A, B cations on their sublattices. A point-ion electrostatic model parametrized by the oxygen displacement parameter u and by the relative cation valencies Z{A} vs Z{B} provides a simple rule for the structural preference for N or I: if Z{A}>Z{B} the structure is normal for u>0.2592 and inverse for u<0.2578, while if Z{A}0.2578. This rule is illustrated for the known spinel oxides, proving to be ∼98% successful.
منابع مشابه
Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites.
Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the ...
متن کاملOpposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores
Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the ener...
متن کاملSynthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties
The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to...
متن کاملShape-controlled synthesis of high tap density cathode oxides for lithium ion batteries.
A new synthesis approach has been developed to control the morphology of Mn- and Ni-containing carbonate precursors. Through a controlled release of the precipitate, the carbonate precursors form in a "non-classical crystallization" process similar to the natural crystallization of CaCO3, resulting in shapes tunable from microcubes to microspheres. The oriented attachment in the mesocrystal pre...
متن کاملEnhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
High voltage spinel LiNi(0.5)Mn(1.5)O(4) is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). Through careful control of the cooling rate after high temperature calcination, LiNi(0.5)Mn(1.5)O(4) spinels with different disordered phase and/or Mn(3+) contents have been synthesized. It is revealed that during the slow cooling p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 7 شماره
صفحات -
تاریخ انتشار 2010