Enamel matrix derivative protein enhances production of matrixmetalloproteinase-2 by osteoblasts

نویسندگان

  • Seiji Goda
  • Hiroshi Inoue
  • Osamu Takeuchi
  • Yosuke Ujii
  • Eisuke Domae
  • Takashi Ikeo
چکیده

BACKGROUND Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) and regulate remodeling and regeneration of bone. Enamel matrix derivative (EMD) protein has been used clinically for periodontal regeneration, although its molecular mechanisms are not clear. We evaluated the role of matrix metalloproteinases (MMPs) in regulating EMD-dependent degradation of gelatin on oeoblast-like cell line MG63. METHODS MG-63 cells (osteoblast cell line) were incubated with 100 μg/ml EMD protein in the presence or absence of MMP-2 tissue inhibitor for 20 h followed by incubation on DQ-gelatin-coated plates for 4 h. MG-63 cells (1 × 10(6)) were preincubated with SB203580 for 30 min at 37°C and were then placed in 100 μg/ml EMD protein for 24 h. Conditioned media were collected and detected by Western blot analysis. RESULTS EMD protein enhanced cell-mediated degradation of gelatin, which was inhibited by the MMP inhibitor TIMP-2. Furthermore, MMP-2 was produced by MG63 cells in response to EMD protein in a P38 MAPK-dependent manner. In addition, blocking of p38 MAPK activation by SB203580 significantly inhibited generation of the active form of MMP-2. CONCLUSION P38 MAPK pathway promotes expression MMP-2 in EMD activated osteoblasts, which in turn stimulates periodontal regeneration by degrading matrix proteins in periodontal connective tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds

The purpose of bone tissue engineering is to employ scaffolds, cells, and growth factors to facilitate healing of bone defects. The aim of this study was to assess the viability and osteogenic differentiation of primary human osteoblasts and adipose tissue-derived mesenchymal stem cells from various donors on titanium dioxide (TiO2) scaffolds coated with an alginate hydrogel enriched with ename...

متن کامل

Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment

Our study seeks to explore anabolic effects of a periodontal regenerative agent enamel matrix derivative (EMD). Its modulation by nicotine and the anti-oxidant glutathione (GSH) are investigated in human periosteal fibroblasts (HPF) and MG63 osteoblasts. Androgen biomarkers of oxidative stress and healing, resulting from radiolabeled androgen substrates are assayed. This in vitro model simulate...

متن کامل

Effect f Enamel Matrix Derivative n Alkaline Phosphatase Activity n Osteoblast Cells Through he Mitogen-activated Protein Kinase Pathway

The study examined the response of MG63 to Enamel Matrix Derivative (EMD) on the coarse-grit-blasted and acid-etched surface disks. We characterized associated changes in proliferation and differentiation related intracelluar signaling molecular including mitogen activitied protein kibase. The major groups of MAPKs (ERK1/2, cJUN-terminal kinases, JNK and p38-MAPK) have been characterized in pre...

متن کامل

Evaluation of Enamel Matrix Derivative (EMD) Teratogenicity on the Rat Embryo Neural Crest Culture

Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment in spite of the fact that its effect on the developing embryo has not been elucidated. The aim of this study was to investigate the teratogenic effect of EMD on the rat embryo neural crest cells. The neural crest is a unique population of cells that migrates from the dorsal neural tube along defined pathways and pro...

متن کامل

بررسی هیستولوژیک اثربخشی Enamel matrix derivative در Surgical defect دندان گوسفند

The aim of the present study was the histological evaluation of Enamel Matrix Derivative (EMD) effectiveness for regeneration of periodontal defects. EMD activates cementum synthesis, PDL and bone during the maturation stage of follicole. In this research, EMD was used in surgical defects of premolar teeth in four adult sheep. Muccoperiosteal flap was reflected in buccal site of teeth. The bucc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014