Constrained Kalman filtering via density function truncation for turbofan engine health estimation
نویسندگان
چکیده
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This article develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the probability density function (PDF) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but also improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. It is also shown that the truncated Kalman filter may provide a more accurate way of incorporating inequality constraints than other constrained filters (e.g. the projection approach to constrained filtering).
منابع مشابه
H∞ Filtering with Inequality Constraints for Aircraft Turbofan Engine Health Estimation
H∞ filters (also called minimax filters) can estimate the state variables of a dynamic system. However, in the application of state estimators, some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of state es...
متن کاملAircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This...
متن کاملA comparison of filtering approaches for aircraft engine health estimation
Different approaches for the estimation of the states of linear dynamic systems are commonly used, the most common being the Kalman filter. For nonlinear systems, variants of the Kalman filter are used. Some of these variants include the LKF (linearized Kalman filter), the EKF (extended Kalman filter), and the UKF (unscented Kalman filter). With the LKF and EKF, performance varies depending on ...
متن کاملKalman Filtering for Uncertain
To my family, anna and ammu ACKNOWLEDGEMENT I would like to express my sincere indebtness and gratitude to my thesis advisor Dr. Dan Simon, for the ingenious commitment, encouragement and highly valuable advice he provided me over the entire course of this thesis. I would also like to thank my committee members Dr. Zhiqiang Gao and Dr. Sridhar Ungarala for their support and advice. I wish thank...
متن کاملA Quadratic Programming Framework for Constrained and Robust Jet Engine Health Monitoring
Kalman filters are largely used in the jet engine community for condition monitoring purpose. This algorithm gives a good estimate of the engine condition provided that the residuals between the model prediction and the measurements are zero-mean, Gaussian random variables. In the case of sensor faults, this assumption does not hold anymore and consequently the diagnosis is spoiled. This contri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Systems Science
دوره 41 شماره
صفحات -
تاریخ انتشار 2010