WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects

نویسندگان

  • Gea Guerriero
  • Jean-Francois Hausman
  • Inés Ezcurra
چکیده

The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR) proteins often function as molecular "hubs" mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico approaches, such as analyses of co-expression, interactome and conserved gene neighborhood. Notably, some WDR genes are frequently genomic neighbors of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CesAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing Of Degenerate Primers-Based Polymerase Chain Reaction (PCR) For Amplification Of WD40 Repeat-Containing Proteins Using Local Allignment Search Method

Degenerate primers-based polymerase chain reaction (PCR) are commonly used for isolation of unidentified gene sequences in related organisms. For designing the degenerate primers, we propose the use of local alignment search method for searching the conserved regions long enough to design an acceptable primer pair. To test this method, a WD40 repeat-containing domain protein from Beauveria bass...

متن کامل

Editorial: Signaling through WD-Repeat Proteins in Plants

Plants are sessile organisms that rely on appropriate signal-transduction responses in order to cope with the challenges imposed by their environment, and must be able to recognize potential damage or benefit to respond accordingly. These response mechanisms are mediated by specific sets of signal receptors, effector proteins interacting through scaffolding assemblies, second messengers, and tr...

متن کامل

Cell cycle: Waiters serving the Destruction machinery

Targeting regulatory proteins for destruction, and thereby controlling progression through mitosis, is the crucial task for the anaphase-promoting complex (APC). Recent evidence suggests that essential APC activators, WD40 repeat proteins of the Cdc20 family, act as long-suspected receptors for APC substrates.

متن کامل

Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biol...

متن کامل

The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes.

PtdIns(3)P plays critical roles in the autophagy pathway. However, little is known about how PtdIns(3)P effectors act with autophagy proteins in autophagosome formation. Here we identified an essential autophagy gene in C. elegans, epg-6, which encodes a WD40 repeat-containing protein with PtdIns(3)P-binding activity. EPG-6 directly interacts with ATG-2. epg-6 and atg-2 regulate progression of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015