Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks
نویسندگان
چکیده
This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope paired with a femtosecond pulsed Ti:S laser to induce hydrogel degradation; and the imaging of fabricated microfluidic networks using fluorescent species and confocal microscopy. Much of the protocol is focused on the proper setup and implementation of the microscope software and microscope macro, as these are crucial steps in using a commercial microscope for microfluidic fabrication purposes that contain a number of intricacies. The image-guided component of this technique allows for the implementation of 3D image stacks or user-generated 3D models, thereby allowing for creative microfluidic design and for the fabrication of complex microfluidic systems of virtually any configuration. With an expected impact in tissue engineering, the methods outlined in this protocol could aid in the fabrication of advanced biomimetic microtissue constructs for organ- and human-on-a-chip devices. By mimicking the complex architecture, tortuosity, size, and density of in vivo vasculature, essential biological transport processes can be replicated in these constructs, leading to more accurate in vitro modeling of drug pharmacokinetics and disease.
منابع مشابه
Excimer laser fabrication of polymer microfluidic devices
Silicon has been a primary material for fabrication of microelectromechanical systems ~microfluidic devices in MEMS! for several decades. This is due to the fact that the MEMS techniques were derived from those used for microfabrication in the semiconductor industry. These techniques are well developed, and can be readily applied for silicon based MEMS fabrication. Nowadays, alternative manufac...
متن کاملFemtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices
Femtosecond lasers enable the fabrication of both optical waveguides and buried microfluidic channels on a glass substrate. The waveguides are used to integrate optical detection in a commercial microfluidic lab-on-chip for capillary electrophoresis. A lab-on-chip (LOC) is a device that squeezes onto a single glass substrate the functionalities of a biological laboratory, by incorporating a net...
متن کاملA simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer
We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of to...
متن کاملPMMA Solution Assisted Room Temperature Bonding for PMMA–PC Hybrid Devices
Recently, thermoplastic polymers have become popular materials for microfluidic chips due to their easy fabrication and low cost. A polymer based microfluidic device can be formed in various fabrication techniques such as laser machining, injection molding, and hot embossing. A new bonding process presented in this paper uses a 2.5% (w/w) polymethyl methacrylate (PMMA) solution as an adhesive l...
متن کاملFemtosecond laser fabrication of integrated optical waveguides and microfluidic channels for lab-on-chip devices
We use a femtosecond laser to fabricate on a glass substrate both microfluidic channels and high quality optical waveguides, intersecting each other. Waveguide-channel integration opens new prospects for in-situ sensing in lab-on-chip devices. Introduction A lab-on-chip (LOC) is a device that squeezes onto a single glass substrate the functionalities of a biological laboratory, by incorporating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 108 شماره
صفحات -
تاریخ انتشار 2017