Application of transient evanescent grating techniques to the study of liquid/liquid interfaces.
نویسندگان
چکیده
Transient grating experiments performed with evanescent fields resulting from total internal reflection at an interface between a polar absorbing solution and an apolar transparent solvent are described. The time evolution of the diffracted intensity was monitored from picosecond to millisecond time scales. The diffracted signal originates essentially from two density phase gratings: one in the absorbing phase induced by thermal expansion and one in the transparent solvent due to electrostriction. A few nanoseconds after excitation, the latter grating is replaced by a thermal grating due to thermal diffusion from the absorbing phase. The speed of sound and the acoustic attenuation measured near the interface are found to be essentially the same as in the bulk solutions. However, after addition of a surfactant in the polar phase, the speed of sound near the interface differs substantially from that in the bulk with the same surfactant concentration. This effect is interpreted in terms of adsorption at the liquid/liquid interface. Other phenomena, which are not observed in bulk experiments, such as acoustic echoes and a fast oscillation of the signal intensity, are also described.
منابع مشابه
Ultrafast dynamics at solid/liquid interfaces as investigated by photothermal spectroscopy*
Among the recent topics of photothermal (PT) applications of lasers, we focus on ultrafast (<=1.0 ns) photothermal/photoacoustic (PT/PA) phenomena occurring at interfaces, which play important roles in nanoscale materials science and technology. Here, we describe our recently developed novel PT techniques called transient reflecting grating (TRG) spectrometries. These techniques have been appli...
متن کاملNumerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection
The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...
متن کاملTransient liquid phase bonding of AISI 304L stainless steels with the austenitic and martensitic microstructures
In the present study, the effect of time and base metal microstructure on the Transient Liquid Phase (TLP) bonding of 304L stainless steel was studied. TLP was performed at 1050 0C for 5 and 60 minutes on the coarse grain austenitic and martensitic microstructure using BNi-2 interlayer. To prepare martensitic microstructure, as-received 304L was rolled at -15 0C up to 80% rolling reduction. TEM...
متن کاملInvestigation of the mechanical properties and microstructure of the Ti-6Al-4V to Al2024 joint fabricated by successive- stage transient liquid phase (S-TLP) method
The aim of this study is investigation of TLP variables on microstructure and mechanical properties of Al2024 to Ti-6Al-4V bonding for TLP joint. For this purpose, the sheets were prepared with dimension of 130×32×3 mm from Ti-6Al-4V and Al2024 alloys and 50µm thick Sn-5.3Ag-4.2Bi foil as interlayer. Sn-5.3Ag-4.2Bi foil prepared with dimension of 32×25 mm. Two alloys was joint together by proce...
متن کاملTransient liquid phase bonding of AISI 304L stainless steels with the austenitic and martensitic microstructures
In the present study, the effect of time and base metal microstructure on the Transient Liquid Phase (TLP) bonding of 304L stainless steel was studied. TLP was performed at 1050 0C for 5 and 60 minutes on the coarse grain austenitic and martensitic microstructure using BNi-2 interlayer. To prepare martensitic microstructure, as-received 304L was rolled at -15 0C up to 80% rolling reduction. TEM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 10 شماره
صفحات -
تاریخ انتشار 2005