On Maximal Spherical Codes I
نویسندگان
چکیده
We investigate the possibilities for attaining two Levenshtein upper bounds for spherical codes. We find the distance distributions of all codes meeting these bounds. Then we show that the fourth Levenshtein bound can be attained in some very special cases only. We prove that no codes with an irrational maximal scalar product meet the third Levenshtein bound. So in dimensions 3 ≤ n ≤ 100 exactly seven codes are known to attain this bound and ten cases remain undecided. Moreover, the first two codes (in dimensions 5 and 6) are unique up to isometry. Nonexistence of maximal codes in all dimensions n with cardinalities between 2n+1 and 2n+ [7 √ n ] is shown as well. We prove nonexistence of several infinite families of maximal codes whose maximal scalar product is rational. The distance distributions of the only known nontrivial infinite family of maximal codes (due to Levenshtein) are given.
منابع مشابه
Improved Linear Programming Bounds for Antipodal Spherical Codes
Let S ?1; 1). A nite set C = fx i g M i=1 < n is called a spherical S-code if kx i k = 1 for each i, and x T i x j 2 S, i 6 = j. For S = ?1; :5] maximizing M = jCj is commonly referred to as the kissing number problem. A well-known technique based on harmonic analysis and linear programming can be used to bound M. We consider a modiication of the bounding procedure that is applicable to antipod...
متن کاملOn maximal antipodal spherical codes with few distances
Using linear programming techniques we derive bounds for antipodal spherical codes. The possibilities for attaining our bounds are investigated and Lloyd-type theorems are proved.
متن کاملNew Upper Bounds for Some Spherical Codes
The maximal cardinality of a code W on the unit sphere in n dimensions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two methods for obtaining new upper bounds on A(n, s) for some values of n and s. We find new linear programming bounds by suitable polynomials of degrees which are higher than the degrees of the previously known good polynomials due to Levenshtein [11,...
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملAsymptotically Dense Spherical Codes—Part I: Wrapped Spherical Codes
A new class of spherical codes called wrapped spherical codes is constructed by “wrapping” any sphere packing in Euclidean space onto a finite subset of the unit sphere in one higher dimension. The mapping preserves much of the structure of , and unlike previously proposed maps, the density of wrapped spherical codes approaches the density of as the minimum distance approaches zero. We show tha...
متن کامل