Comparison of methods for deriving atomic charges from the electrostatic potential and moments

نویسندگان

  • Emma Sigfridsson
  • Ulf Ryde
چکیده

Four methods for deriving partial atomic charges from the Ž quantum chemical electrostatic potential CHELP, CHELPG, Merz-Kollman, and . RESP have been compared and critically evaluated. It is shown the charges strongly depend on how and where the potential points are selected. Two alternative methods are suggested to avoid the arbitrariness in the point-selection schemes and van der Waals exclusion radii: CHELP-BOW, which also estimates the charges from the electrostatic potential, but with potential points that are Boltzmann-weighted after their occurrence in actual simulations using the energy function of the program in which the charges will be used, and CHELMO, which estimates the charges directly from the electrostatic multipole moments. Different criteria for the quality of the charges are discussed. The CHELMO method gives the best multipole moments for small and medium-sized polar systems, whereas the CHELP-BOW charges reproduce best the total interaction energy in actual simulations. Among the standard methods, the Merz-Kollman charges give the best moments and potentials, but they show an appreciable dependence on the orientation of the molecule. We have also examined the recent warning that charges derived by a least-squares fit to the electrostatic potential normally are not statistically valid. It is shown that no rank-deficiency problems are encountered for molecules with up to 84 atoms if the least-squares fit is performed using pseudoinverses calculated by singular value decomposition and if constraints are treated by elimination. Q 1998 John Wiley & Sons, Inc. J Comput Chem 19: 377]395, 1998

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of the Correlation between 14N NQCC and Its Partial Atomic Charge in Amino Derivatives of Adamantane

The electronic structures and the electrostatic potential of some amino derivatives of adamantane have been studied using the density functional theory. The partial atomic charges and nuclear quadrupole coupling constants (NQCC) of 14N nucleus of the considered molecules have been reported. The partial atomic charges are calculated with two methods for 14N nucleus: Mulliken charges and natural ...

متن کامل

HPAM: Hirshfeld partitioned atomic multipoles

An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l(max) on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole mo...

متن کامل

Atomic multipoles: Electrostatic potential fit, local reference axis systems, and conformational dependence

Currently, all standard force fields for biomolecular simulations use point charges to model intermolecular electrostatic interactions. This is a fast and simple approach but has deficiencies when the electrostatic potential (ESP) is compared to that from ab initio methods. Here, we show how atomic multipoles can be rigorously implemented into common biomolecular force fields. For this, a compr...

متن کامل

A point-charge model for electrostatic potentials based on a local projection of multipole moments

We introduce a method for obtaining atomic point-charges that yield accurate representations of the electrostatic potentials (ESP) of large systems. The method relies on a decomposition of the density and subsequent projection of the multipole moments of the density components onto neighbouring atomic sites. The resulting local multipole-derived charges (LMDCs) are well-defined, do not require ...

متن کامل

A charge analysis derived from an atomic multipole expansion

A new charge analysis is presented that gives an accurate description of the electrostatic potential from the charge distribution in molecules. This is achieved in three steps: first, the total density is written as a sum of atomic densities; next, from these atomic densities a set of atomic multipoles is defined; finally, these atomic multipoles are reconstructed exactly by distributing charge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Computational Chemistry

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1998