Characterization, kinetics, and crystal structures of fructose-1,6-bisphosphate aldolase from the human parasite, Giardia lamblia.

نویسندگان

  • Andrey Galkin
  • Liudmila Kulakova
  • Eugene Melamud
  • Ling Li
  • Chun Wu
  • Patrick Mariano
  • Debra Dunaway-Mariano
  • Theodore E Nash
  • Osnat Herzberg
چکیده

Class I and class II fructose-1,6-bisphosphate aldolases (FBPA), glycolytic pathway enzymes, exhibit no amino acid sequence homology and utilize two different catalytic mechanisms. The mammalian class I FBPA employs a Schiff base mechanism, whereas the human parasitic protozoan Giardia lamblia class II FBPA is a zinc-dependent enzyme. In this study, we have explored the potential exploitation of the Giardia FBPA as a drug target. First, synthesis of FBPA was demonstrated in Giardia trophozoites by using an antibody-based fluorescence assay. Second, inhibition of FBPA gene transcription in Giardia trophozoites suggested that the enzyme is necessary for the survival of the organism under optimal laboratory growth conditions. Third, two crystal structures of FBPA in complex with the transition state analog phosphoglycolohydroxamate (PGH) show that the enzyme is homodimeric and that its active site contains a zinc ion. In one crystal form, each subunit contains PGH, which is coordinated to the zinc ion through the hydroxamic acid hydroxyl and carbonyl oxygen atoms. The second crystal form contains PGH only in one subunit and the active site of the second subunit is unoccupied. Inspection of the two states of the enzyme revealed that it undergoes a conformational transition upon ligand binding. The enzyme cleaves d-fructose-1,6-bisphosphate but not d-tagatose-1,6-bisphosphate, which is a tight binding competitive inhibitor. The essential role of the active site residue Asp-83 in catalysis was demonstrated by amino acid replacement. Determinants of catalysis and substrate recognition, derived from comparison of the G. lamblia FBPA structure with Escherichia coli FBPA and with a closely related enzyme, E. coli tagatose-1,6-bisphosphate aldolase (TBPA), are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the substrate binding and stereoselectivity of giardia fructose-1,6-bisphosphate aldolase.

Giardia lamblia fructose-1,6-bisphosphate aldolase (FBPA) is a member of the class II zinc-dependent aldolase family that catalyzes the cleavage of d-fructose 1,6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (G3P). In addition to the active site zinc, the catalytic apparatus of FBPA employs an aspartic acid, Asp83 in the G. lamblia enzyme, which whe...

متن کامل

Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase

The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pat...

متن کامل

Identification of immunoreactive proteins during acute human giardiasis.

The protozoan Giardia lamblia is a major cause of parasite-induced diarrhea in humans. Humoral immunity has been shown to be important for clearance of the infection, but only a few antigens have been identified. In this study, we focused on the immunoreactivity of nonvariant antigens. Serum samples from 93 patients with acute giardiasis who were infected during a waterborne outbreak in a nonen...

متن کامل

Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications.

Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystal...

متن کامل

Healthy and Gestational Diabetic Human Placental Fructose 1,6 Bisphosphate Aldolase; Comparative Investigation of Kinetic Properties and Inhibition Effects of DHAP, ATP, and Mg ion

Fructose-1,6-bisphosphate aldolase plays an effective role in glucose metabolism and gluconeogenic pathway, and reversibly catalyzes the split of fructose 1,6-bisphosphate into the triose phosphates D-glyceraldehyde phosphate and dihydroxyacetone phosphate. Aldolase has 160 kDa molecular weight and three tissue specific isozymes. Gestational diabetes mellitus is defined as glucose intolerance t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 7  شماره 

صفحات  -

تاریخ انتشار 2007