Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites☆
نویسندگان
چکیده
S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]methylamino}-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites.
منابع مشابه
Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission
Polyamines are positively-charged organic molecules that are important for cellular growth and division. Polyamines and their synthesizing enzymes are particularly abundant in rapidly proliferating eukaryotic cells such as parasitic protozoa and cancer cells. Polyamine biosynthesis inhibitors, such as Elfornithine, are now being considered for cancer prevention and have been used effectively ag...
متن کامل3-Aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations.
The intraerythrocytic development of Plasmodium falciparum correlates with increasing levels of the polyamines putrescine, spermidine, and spermine in the infected red blood cells; and compartmental analyses revealed that the majority is associated with the parasite. Since depletion of cellular polyamines is a promising strategy for inhibition of parasite proliferation, new inhibitors of polyam...
متن کاملRole of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors.
Hemoglobin (Hb) degradation is essential for the growth of the intraerythrocytic stages of malarial parasites. This process, which occurs inside an acidic digestive vacuole (DV), is thought to involve the action of four aspartic proteases, termed plasmepsins (PMs). These enzymes have received considerable attention as potential antimalarial drug targets. Leveraging the availability of a set of ...
متن کاملPotent antimalarial activity of histone deacetylase inhibitor analogues.
The malaria parasite Plasmodium falciparum has at least five putative histone deacetylase (HDAC) enzymes, which have been proposed as new antimalarial drug targets and may play roles in regulating gene transcription, like the better-known and more intensively studied human HDACs (hHDACs). Fourteen new compounds derived from l-cysteine or 2-aminosuberic acid were designed to inhibit P. falciparu...
متن کاملStructure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones.
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 appear to be required for hemoglobin hydrolysis by intraerythrocytic malaria parasites. Previous studies showed that peptidyl vinyl sulfone inhibitors of falcipain-2 blocked the development of P. falciparum in culture and exerted antimalarial effects in vivo. We now report the structure-activity relationships for inhibitio...
متن کامل