Par-1 Controls Myosin-II Activity through Myosin Phosphatase to Regulate Border Cell Migration
نویسندگان
چکیده
BACKGROUND Localized actomyosin contraction couples with actin polymerization and cell-matrix adhesion to regulate cell protrusions and retract trailing edges of migrating cells. Although many cells migrate in collective groups during tissue morphogenesis, mechanisms that coordinate actomyosin dynamics in collective cell migration are poorly understood. Migration of Drosophila border cells, a genetically tractable model for collective cell migration, requires nonmuscle myosin-II (Myo-II). How Myo-II specifically controls border cell migration and how Myo-II is itself regulated is largely unknown. RESULTS We show that Myo-II regulates two essential features of border cell migration: (1) initial detachment of the border cell cluster from the follicular epithelium and (2) the dynamics of cellular protrusions. We further demonstrate that the cell polarity protein Par-1 (MARK), a serine-threonine kinase, regulates the localization and activation of Myo-II in border cells. Par-1 binds to myosin phosphatase and phosphorylates it at a known inactivating site. Par-1 thus promotes phosphorylated myosin regulatory light chain, thereby increasing Myo-II activity. Furthermore, Par-1 localizes to and increases active Myo-II at the cluster rear to promote detachment; in the absence of Par-1, spatially distinct active Myo-II is lost. CONCLUSIONS We identify a critical new role for Par-1 kinase: spatiotemporal regulation of Myo-II activity within the border cell cluster through localized inhibition of myosin phosphatase. Polarity proteins such as Par-1, which intrinsically localize, can thus directly modulate the actomyosin dynamics required for border cell detachment and migration. Such a link between polarity proteins and cytoskeletal dynamics may also occur in other collective cell migrations.
منابع مشابه
Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex.
Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for direc...
متن کاملDistinct signaling mechanisms regulate migration in unconfined versus confined spaces
Using a microchannel assay, we demonstrate that cells adopt distinct signaling strategies to modulate cell migration in different physical microenvironments. We studied α4β1 integrin-mediated signaling, which regulates cell migration pertinent to embryonic development, leukocyte trafficking, and melanoma invasion. We show that α4β1 integrin promotes cell migration through both unconfined and co...
متن کاملRole of protein phosphatase type 1 in contractile functions: myosin phosphatase.
Protein phosphatase type 1 (PP1) is involved in a wide range of cell activities (1), and even within the more restricted theme of contractile activity in muscle several processes may be considered. Important areas include regulation of ion channels (2), effect of phospholamban on Ca uptake by the SR (3), and phosphorylation-dephosphorylation of myosin II. Phosphorylation of myosin light chains ...
متن کاملDictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation
Abnormalities in the huntingtin protein (Htt) are associated with Huntington's disease. Despite its importance, the function of Htt is largely unknown. We show that Htt is required for normal chemotaxis and cytokinesis in Dictyostelium discoideum. Cells lacking Htt showed slower migration toward the chemoattractant cAMP and contained lower levels of cortical myosin II, which is likely due to de...
متن کاملDistinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts
We examined the role of regulatory myosin light chain (MLC) phosphorylation of myosin II in cell migration of fibroblasts. Myosin light chain kinase (MLCK) inhibition blocked MLC phosphorylation at the cell periphery, but not in the center. MLCK-inhibited cells did not assemble zyxin-containing adhesions at the periphery, but maintained focal adhesions in the center. They generated membrane pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 22 شماره
صفحات -
تاریخ انتشار 2012