Acquisition of human concentrative nucleoside transporter 2 (hcnt2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells.
نویسندگان
چکیده
CEM-ARAC leukemia cells with resistance to cytarabine were shown to lack equilibrative transporter (hENT1) expression and activity. Stable transfer of hCNT2 cDNA into CEM-ARAC enabled Na(+)-dependent transport of purine and pyrimidine nucleoside analogs and provided a unique in vitro model for studying hCNT2. Analysis of [(3)H]uridine inhibitory activity by test substances in hCNT2 transfectant ARAC/D2 revealed structural requirements for interaction with hCNT2: 1) ribosyl and 2'-deoxyribosyl nucleosides were better inhibitors than 3'-deoxyribosyl, 2',3'-dideoxyribosyl or arabinosyl nucleosides; 2) uridine analogs with halogens at position 5 were better inhibitors than 5-methyluridine or thymidine; 3) 2-chloroadenosine was a better inhibitor than 2-chloro-2'-deoxyadenosine (cladribine); and 4) cytosine-containing nucleosides, 7-deazaadenosine and nucleobases were not inhibitors. Quantification of inhibitory capacity yielded K(i) values of 34-50 microM (5-halogenated uridine analogs, 2'-deoxyuridine), 82 microM (5-fluoro-2'-deoxyuridine), 197-246 microM (5-methyluridine < 5-bromo-2'-deoxyuridine < 5-iodo-2'-deoxyuridine), and 411 microM (5-fluoro-5'-deoxyuridine, capecitabine metabolite). Comparisons of hCNT2-mediated transport rates indicated halogenated uridine analogs were transported more rapidly than halogenated adenosine analogs, even though hCNT2 exhibited preference for physiologic purine nucleosides over uridine. Kinetics of hCNT2-mediated transport of 5-fluorouridine and uridine were similar (K(m) values, 43-46 microM). The impact of hCNT2-mediated transport on chemosensitivity was assessed by comparing antiproliferative activity of nucleoside analogs against hCNT2-containing cells with transport-defective, drug-resistant cells. Chemosensitivity was restored partially for cladribine, completely for 5-fluorouridine and 5-fluoro-2'-deoxyuridine, whereas there was little effect on chemosensitivity for fludarabine, 7-deazaadenosine, or cytarabine. These studies, which demonstrated hCNT2 uptake of halogenated uridine analogs, suggested that hCNT2 is an important determinant of cytotoxicity of this class of compounds in vivo.
منابع مشابه
Molecular requirements of the human nucleoside transporters hCNT1, hCNT2, and hENT1.
Concentrative nucleoside transporters (CNTs) and equilibrative nucleoside transporters (ENTs) are important in physiological and pharmacological activity and disposition of nucleosides and nucleoside drugs. A better understanding of the structural requirements of inhibitors for these transporters will aid in designing therapeutic agents. To define the relative and unified structural requirement...
متن کاملSubstituted cysteine accessibility method (SCAM) analysis of the transport domain of human concentrative nucleoside transporter 3 (hCNT3) and other family members reveals features of structural and functional importance
The human SLC28 family of concentrative nucleoside transporter (CNT) proteins has three members: hCNT1, hCNT2, and hCNT3. Na+-coupled hCNT1 and hCNT2 transport pyrimidine and purine nucleosides, respectively, whereas hCNT3 transports both pyrimidine and purine nucleosides utilizing Na+ and/or H+ electrochemical gradients. Escherichia coli CNT family member NupC resembles hCNT1 in permeant selec...
متن کاملFunctional Nucleoside Transporters Are Required for Gemcitabine Influx and Manifestation of Toxicity in Cancer Cell Lines1
Gemcitabine (2',2'-difluorodeoxycytidine) is a novel pyrimidine nucleoside drug with clinical efficacy in several common epithelial cancers. We have proposed that gemcitabine requires nucleoside transporter (NT) proteins to permeate the plasma membrane and to exhibit pharmacolog ical activity. In humans, there are seven reported distinct NT activities varying in substrate specificity, sodium de...
متن کاملA comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems.
2-Chloro-9-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl)adenine (Cl-F-ara-A, clofarabine), a purine nucleoside analog with structural similarity to 2-chloro-2'-deoxyadenosine (Cl-dAdo, cladribine) and 9-beta-d-arabinofuranosyl-2-fluoroadenine (F-ara-A, fludarabine), has activity in adult and pediatric leukemias. Mediated transport of the purine nucleoside analogs is believed to occur through the...
متن کاملCytarabine-resistant leukemia cells are moderately sensitive to clofarabine in vitro.
BACKGROUND/AIM Clofarabine is transported into leukemic cells via the equilibrative nucleoside transporters (hENT) 1 and 2 and the concentrative nucleoside transporter (hCNT) 3, then phosphorylated by deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) to an active triphosphate metabolite. Cytarabine uses hENT1 and dCK for its activation. We hypothesized that cytarabine-resistant leukemi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 60 5 شماره
صفحات -
تاریخ انتشار 2001